Light Singlino Dark Matter

Martin W. Winkler In Collaboration with R. Kappl, M. Ratz

arXiv:1010.0553 (to appear in PLB)

PPSM Colloquium, Munich December 10, 2010

Outline

- Singlinos as Dark Matter
- Experimental Prospects

Evidence for Dark Matter

Big Bang Nucleosynthesis

Gravitational Lensing

Cosmic Microwave Background

Properties of Dark Matter

- cold, (meta)stable, "dark"
- overall density: $\Omega_{DM} \simeq 0.23$ local density: $\rho_{loc} \simeq 0.39 \text{ GeV/cm}^3$ Catena et al., JCAP 08 (2010)
- local velocity distribution

Maxwellian distribution

leading candidate: WIMP

Direct Detection of WIMPs

- WIMP χ passes detector
 → liquid noble gas (Xenon...)
 → crystal (CRESST...)
- scatters off target nucleus

Results I

- null results by Xenon, CDMS, Zeplin, Edelweiss
- modulation signal at DAMA

Bernabei et al., Eur. Phys. J. C67 (2010)

- scintillation light in Nal detector
- 1.17 tyr exposure (13 yrs), 8.9 σ significance of signal
- amplitude, period, phase of signal consistent with WIMPs

Results II

 CoGeNT: germanium detector with very low threshold ~ 2 keV

Aalseth et al., arXiv:1002.4703 [astro-ph] (2010), Hooper et al., arXiv:1007.1005 [hep-ph] (2010)

- exponential rise of events at low energies
- claim: not explainable by electronic noise

Martin W. Winkler (TUM)

Results II

 CoGeNT: germanium detector with very low threshold ~ 2 keV

Aalseth et al., arXiv:1002.4703 [astro-ph] (2010), Hooper et al., arXiv:1007.1005 [hep-ph] (2010)

- exponential rise of events at low energies
- claim: not explainable by electronic noise

 CRESST: cryogenic CaWO₄ detector

Talks by Seidel and Schwetz at IDM 2010

- 32 events in the oxygen band (~400 kg d exposure)
- background estimate by CRESST: ~9 events

Martin W. Winkler (TUM)

PPSM 2010

Confidence Regions and Exclusion Curves

Confidence Regions and Exclusion Curves

light WIMPs $m_{\chi} \simeq 5 - 10$ GeV, $\sigma_p \sim 10^{-40}$ cm² could explain DAMA, CoGeNT and CRESST !

Martin W. Winkler (TUM)

PPSM 2010

- Standard Model:
 - neutrino

- Standard Model:
 - neutrino hot dark matter, mass too small

- Standard Model:
 - neutrino hot dark matter, mass too small
- Minimal Supersymmetric Standard Model:
 - sneutrino
 - wino, higgsino
 - bino

- Standard Model:
 - neutrino hot dark matter, mass too small
- Minimal Supersymmetric Standard Model:
 - sneutrino Z width
 - wino, higgsino
 - bino

- Standard Model:
 - neutrino hot dark matter, mass too small
- Minimal Supersymmetric Standard Model:
 - sneutrino Z width
 - wino, higgsino collider searches
 - bino

- Standard Model:
 - neutrino hot dark matter, mass too small
- Minimal Supersymmetric Standard Model:
 - sneutrino Z width
 - wino, higgsino collider searches
 - bino cross section too small

- Standard Model:
 - neutrino hot dark matter, mass too small
- Minimal Supersymmetric Standard Model:
 - sneutrino Z width
 - wino, higgsino collider searches
 - bino cross section too small
 - mixture bino higgsino?

 σ_p maximal at very large tan β , $m_H \simeq 100$ GeV, $\cos \alpha = 1$: Belikov et al., arXiv:1009.0549 [hep-ph] (2010)

$$\sigma_p \sim 10^{-41} \, {
m cm}^2 imes {N_{13}^2 \over 0.1} \qquad {
m but} \quad N_{13}^2 \lesssim 0.1$$

- Standard Model:
 - neutrino hot dark matter, mass too small
- Minimal Supersymmetric Standard Model:
 - sneutrino Z width
 - wino, higgsino collider searches
 - bino cross section too small
 - mixture bine higgsine?

 σ_p maximal at very large tan β , $m_H \simeq 100$ GeV, $\cos \alpha = 1$: Belikov et al., arXiv:1009.0549 [hep-ph] (2010)

$$\sigma_p \sim 10^{-41}\,{
m cm}^2 imes {N_{13}^2\over 0.1} \qquad {
m but} \quad N_{13}^2 \lesssim 0.1$$

A Supersymmetric Model

- introduce one singlet superfield S
- new particles: singlino \tilde{s} , singlet scalar h_s , pseudoscalar a_s
- most general superpotential (including S²-term) Drees, Int. J. Mod. Phys. A4 (1989)

$$\mathcal{W} = \mathcal{W}_{\text{MSSM}} + \lambda \, \mathcal{S} \, H_u H_d + \frac{\mu_s}{2} \, \mathcal{S}^2 + \frac{\kappa}{3} \, \mathcal{S}^3$$

- + corresponding soft terms
- interaction between singlet and MSSM controlled by λ
- interaction in singlet sector controlled by κ

Keeping Singlets Light

$\lambda = \mathbf{0}$

- MSSM and singlet sector decouple
- assumption: (singlet mass terms) $\sim M_{
 m singlet} \sim 10 \text{ GeV}$ $\Rightarrow m_{h_{
 m s}} \sim m_{a_{
 m s}} \sim m_{\widetilde{
 m s}} \sim 10 \text{ GeV}$
- light \tilde{s} LSP, but vanishing σ_p

 $\underline{\lambda} = 10^{-2} \dots 10^{-3}$

- s receives vacuum expectation value $\langle s \rangle \sim v$
- new singlet mass terms like $\kappa \langle s \rangle$
 - \Rightarrow singlets stay light if $\kappa \lesssim 0.1$

Mixing with MSSM Fields

- apply MSSM decoupling limit
 - ignore heavy MSSM Higgs
 - light MSSM Higgs h Standard Model like
- \tilde{s} , a_s : (almost) pure singlets
- h_s mixes slightly with SM Higgs $h_1 = \cos \theta \ h_s - \sin \theta \ h$ with $\sin \theta \sim 0.01$

*h*₁ mimics light SM Higgs with suppressed couplings

Can Singlinos explain CRESST, ...?

- correct mass range (by assumption)
- WIMP nucleon cross section dominated by *h*₁-exchange

$$\sigma_{p} \sim 10^{-40} \,\mathrm{cm}^2 \,\left(rac{\kappa}{0.08}
ight)^2 \left(rac{\sin heta}{0.03}
ight)^2 \,\left(rac{4\,\mathrm{GeV}}{m_{h_1}}
ight)^4$$

Can Singlinos explain CRESST, ...?

- correct mass range (by assumption)
- WIMP nucleon cross section dominated by *h*₁-exchange

$$\sigma_p \sim 10^{-40} \,\mathrm{cm}^2 \,\left(rac{\kappa}{0.08}
ight)^2 \left(rac{\sin heta}{0.03}
ight)^2 \,\left(rac{4\,\mathrm{GeV}}{m_{h_1}}
ight)^4$$

 \Rightarrow CRESST, . . . explanation for sizeable κ , small m_{h_1}

Singlinos as Thermal Relics

- singlinos thermally produced in the early universe
- for thermal relic $\mathbf{\Omega} \propto \langle \sigma v_{\rm rel}
 angle^{-1}$
- sizeable κ , small m_{h_1} opens annihilation channel(s)

A Benchmark Scenario

Input Parameters		Predictions	
Quantity	Value	Quantity	Value
μ	370 GeV	m _{as}	28 GeV
$\langle s \rangle$	163 GeV	$m_{\tilde{s}}$	7 GeV
A_{κ}	-9 GeV	m_{h_1}	4 GeV
μ_{s}	-19 GeV	$\sin \theta$	0.03
$B\mu_s$	0	σ_{p}	$\sim 10^{-40} cm^2$
λ	-0.003	Ωh^2	\sim 0.1
κ	0.08		

- $m_{\tilde{s}}$, σ_p to explain CoGeNT, DAMA, CRESST
- $\Omega_{\tilde{s}} = \Omega_{DM}$ through annihilation into $h_1 h_1$
- OK with experimental constraints ?

Martin W. Winkler (TUM)

Experimental Constraints on Light Scalar

- LEP searches for Higgs-like scalars
- *h*₁ can be produced in Meson decays (e.g. BELLE)

Experimental Prospects

Direct Detection:

 light Dark Matter interpretation will be tested by COUPP, ANAIS,..., new runs of CRESST, CoGeNT

B Factories:

• light scalar h_1 can be detected in B or Υ -meson decays

Large Hadron Collider:

- search for signals of singlino LSPs
- some promising signatures
 - many leptons
 - displaced vertices for Bino NLSP
 - charged tracks for stau NLSP

 several DM direct detection experiments hint at light WIMPs with rather large cross sections

- several DM direct detection experiments hint at light WIMPs with rather large cross sections
- neither the SM nor the MSSM can account for such WIMPs

- several DM direct detection experiments hint at light WIMPs with rather large cross sections
- neither the SM nor the MSSM can account for such WIMPs
- a simple singlet extension of the MSSM offers a candidate: the singlino

- several DM direct detection experiments hint at light WIMPs with rather large cross sections
- neither the SM nor the MSSM can account for such WIMPs
- a simple singlet extension of the MSSM offers a candidate: the singlino
- accompanied by scalar which mixes with SM Higgs

- several DM direct detection experiments hint at light WIMPs with rather large cross sections
- neither the SM nor the MSSM can account for such WIMPs
- a simple singlet extension of the MSSM offers a candidate: the singlino
- accompanied by scalar which mixes with SM Higgs
- singlino nucleon interactions mediated by this scalar explain direct detection signals

- several DM direct detection experiments hint at light WIMPs with rather large cross sections
- neither the SM nor the MSSM can account for such WIMPs
- a simple singlet extension of the MSSM offers a candidate: the singlino
- accompanied by scalar which mixes with SM Higgs
- singlino nucleon interactions mediated by this scalar explain direct detection signals
- correct relic density obtained by annihilation of singlinos into scalars

- several DM direct detection experiments hint at light WIMPs with rather large cross sections
- neither the SM nor the MSSM can account for such WIMPs
- a simple singlet extension of the MSSM offers a candidate: the singlino
- accompanied by scalar which mixes with SM Higgs
- singlino nucleon interactions mediated by this scalar explain direct detection signals
- correct relic density obtained by annihilation of singlinos into scalars
- ingredients of this scenario will soon be tested by various experiments