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Outline

● Why goodness of fit?

● Statistical approach – p-values 

● Common statistics – common pitfalls

● [A bit of number theory: runs and integer partitions]
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Motivating Example

I : quadratic (SM)
II : constant + Gaussian
III : linear + Gaussian
IV : quadratic + Gaussian

Suppose:
● N measurements  yi(xi)   with  uncertainty

● Standard Model (SM) background is quadratic
● New physics (NP) predicts signal peak (more than one NP model)

Is Standard model enough to explain data?
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Example problem

f(xj~̧ ) = A+Bx+ Cx2 + Dp
2¼¾2

exp

Ã
¡ (x¡ ¹)

2

¾2

!

Poisson Gauss

Fit function

I : ~̧ = (A;B;C)

II : ~̧ = (A;D; ¹; ¾)

III : ~̧ = (A;B;D; ¹; ¾)

IV : ~̧ = (A;B;C;D; ¹; ¾)
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Restriction

● Don't compare models directly here. Assume a model is true, 
then check consistency

● Often no alternative model known

● For model comparison (which one favored by data?) 
recommend Bayesian approach
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Goodness of Fit: standard approach

Requirement: 
● Assume a model M with parameters λ

Test statistic:
● Any scalar function of data, T(D) 
● Interpret: large T(D) = poor model

T D≡2D

Example:
● Prob. density of the data 

● Familiar choice

● Extension: discrepancy variable T(D|λ). Fitting procedure important!

P D∣∝∏ exp {− y i−f x i∣ 
2

2 i
2 }=exp {−

2

2 }
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p-value

● Assuming M and before data is taken: 
 p uniform in [0,1] 

● Confidence level: 

Warning: p-value not the P. that the model is true
 

p≡P TT D ∣M

p

T(D)

Tail area

Frequency if experiment repeated

p1−⇒reject model

1−=0.05
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Reasoning behind p-values

● Good model: flat p-value

● Bad model: peak at p=0, 
sharply falling

● Need prior knowledge about 
alternatives

● vague interpretation

Don't take p-value too seriously!

good

bad

p
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p-value caveat

Frequent misunderstandings

There are several common misunderstandings about p-values.[3][4]

The p-value is not the probability that the null hypothesis is true.
In fact, frequentist statistics does not, and cannot, attach probabilities to hypotheses. Comparison of Bayesian and classical approaches shows 
that a p-value can be very close to zero while the posterior probability of the null is very close to unity (if there is no alternative hypothesis 
with a large enough a priori probability and which would explain the results more easily). This is the Jeffreys–Lindley paradox. 
The p-value is not the probability that a finding is "merely a fluke."
As the calculation of a p-value is based on the assumption that a finding is the product of chance alone, it patently cannot also be used to 
gauge the probability of that assumption being true. This is different from the real meaning which is that the p-value is the chance of 
obtaining such results if the null hypothesis is true. 
The p-value is not the probability of falsely rejecting the null hypothesis. This error is a version of the so-called prosecutor's fallacy. 
The p-value is not the probability that a replicating experiment would not yield the same conclusion. 
1 − (p-value) is not the probability of the alternative hypothesis being true (see (1)). 
The significance level of the test is not determined by the p-value.
The significance level of a test is a value that should be decided upon by the agent interpreting the data before the data are viewed, and is 
compared against the p-value or any other statistic calculated after the test has been performed. (However, reporting a p-value is more useful 
than simply saying that the results were or were not significant at a given level, and allows the reader to decide for himself whether to 
consider the results significant.) 

The p-value does not indicate the size or importance of the observed effect (compare with effect size). The two do vary together however 
– the larger the effect, the smaller the p-value will be, other things being equal. 

From wikipedia

http://en.wikipedia.org/wiki/P-value%22%20%5Cl%20%22ite_note-Sterne2001-2
http://en.wikipedia.org/wiki/P-value%22%20%5Cl%20%22ite_note-Schervish1996-3
http://en.wikipedia.org/wiki/Frequentism
http://en.wikipedia.org/wiki/Bayesian_probability
http://en.wikipedia.org/wiki/Posterior_probability
http://en.wikipedia.org/wiki/Jeffreys%E2%80%93Lindley_paradox
http://en.wikipedia.org/wiki/Prosecutor's_fallacy
http://en.wikipedia.org/wiki/Effect_size
http://en.wikipedia.org/wiki/P-value
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Choice of statistic

Surprise: T arbitrary

Criteria: 

● distribution known

● Easy to compute

● Power to reject alternatives

● Now consider statistics for 
Gauss, Poisson
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Comparison study

● Goal: calculate p-value distribution for common statistics

● 10000 experiments

● Sample N data points from Model IV with fixed parameters

● Fit all models with (Markov chain+MINUIT) or MINUIT alone

● Plot the distribution of the p-value for the statistics chosen
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Test Statistics: Poisson

Pearson

 

Neyman

observed eventsni

expected events

● Uncertainty if ni=0 ? Ignore bin or set uncertainty =1 

● Asymptotically (i.e. infinite data, in each bin: ni >>1) know 
distribution of       .

Â2P =
X

i

(ni ¡ ºi)
ºi

2

Â2N =
X

i

(ni ¡ ºi)
ni

2

ºi = ºi(~̧ ;M )

Â2P
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Results

● Worrisome peak for Neyman 
in model III
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Approximations 

● No parameters fit, just plug in 
values used to generate the 
data sets

● Expect flat p-value 

● Pearson  good approximation

● Neyman  bad, gets worse for 
smaller event numbers

Use Pearson. 
No uncertainties without model
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Gaussian linear regression

Circle intersection

Least squares constraint, 
find     at global minimum:

Predictions depend on parameters:

In real life, usually don't know exact form of P (Â2j~̧¤; N; n)

Example:

Â2(~̧ ) =
X

i

³
f(xij~̧ )¡ yi

´2

¾2i
=
X

i

z2i

rÂ2 ´ @Â2

@¸j
= 0 j = 1 : : : n

f(xij~̧ ) linear in ~̧ ) rÂ2 = 0 linear in zi ) (N ¡ n) DoF

f(xj~̧ ) = A+Bx+Cx2 + Dp
2¼¾2

exp

Ã
¡ (x¡ ¹)

2

¾2

!

~̧¤
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Multimodality

Likelihood of model IV for particular data set
and small range

● Physics motivates small parameter 
range: e.g. C>0, σ>0.2 …

● Global minimum may be elsewhere. 
Compare with large range

● Gradient based optimization 
(MINUIT/MIGRAD): need good starting 
point

● Clever user guess (difficult) or Markov 
chain (preferred). [mpp.mpg.de/bat/]

Fitting procedure not trivial!

http://mpp.mpg.de/bat/
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Results: p-value distribution for  

Small range Large range

Fitting procedure and parameter ranges affect distribution of p-value
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Local vs Global Minimum

Constraining parameter range = prior belief

True model, global minimum, 
but distribution not flat.
   → Nonlinear problem

Use Â2-distribution with (N ¡ n) DoF
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Conclusions

● P-values useful, but need understanding

● Fitting can make big difference

● Choice of statistic crucial

● Beware: distributions usually approximate
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Sän-kiu

FINISFINIS
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Backup
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Runs

● Most statistics disrespect order 
of data, information wasted

● Human brain good for simple 
problems

Example:

● N=25 datapoints

● Each Gaussian with mean = 0 
and variance = 1

Can we combine information about
 order and magnitude of deviation?
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Runs statistic

Proposal:

● Split data into runs

● Each (success) run has a 
weight

 

● Test statistic: largest weight of 
any run

● p-value becomes

success

failure
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Runs distribution

Gaussian case:

● Distribution of T exactly 
calculated for any N (non-
parametric)

● Requires sum over integer 
partitions

N = 25
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Integer Partitions

● Number of ways to write integer n as sum of [k] integers

● Example

● Investigated by famous people (Leibniz, Euler ...)

● Related to strings, solid state, group theory ...

5 = 5

= 4 + 1

= 3 + 2

= 3 + 1 + 1

= 2 + 2 + 1

= 2 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1

) Part (5; 3) = 2

) Part (5) = 7
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Partition triangle

Proposition: Part(n)¡ 1 =
PN

r=1

Pmin(r;N¡r+1)
M=1 Part(n; k)
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Runs distribution

● Good model: 

a) fitting bias towards p=1

b) Success and failure similar

● Bad model:

a) Success and failure different

b) Bias towards p=0

c) Missed a peak: failures OK

Small range, MCMC
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Goodness of Fit: Bayesian approach

Model selection:
● Need  explicit alternatives M1, M2 
● Posterior odds

Bayes factor:
● (very) sensitive to parameter range

● Occam's razor built in

P D∣M1=∫p D ∣ p0 d 

Example:
● Six (NP) vs three (SM) parameters

P M1∣D

P M2∣D
=

P M1

P M2
×

P D∣M1

P D∣M2

P SM∣D

P NP∣D
=

P SM

P NP
×61.7
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