Quantum phase transitions in holographic superfluids

Hai Ngo (MPI für Physik)

Particle Physics School Munich Colloqium Max Planck Institut für Physik, January 14th, 2011

In collaboration with: J. Erdmenger, V. Grass and P. Kerner, arXiv:1101.xxxx

Introduction	QPT in holographic superfluids at finite baryon
000000	000000

Summary

Motivations

Question 1: What are quantum phase transitions in condense matter physics?

- phase transitions at zero temperature which are driven by quantum fluctuations instead of thermal fluctuations

realized by varying physical parameters (pressure, magnetic field, chemical composition,...)

- quantum critical point, region and finite temperature quantum criticality
- effects quantum criticality
 → first observed in ferroelectrics
- "non-Fermi liquid" or a "strange metal" behavior in the QCR
- strongly interacting region

and isospin chemical potential

Ferroelectric quantum critical point [www.phy.cam.ac.uk/research/qm/ferroelectrics.php]

Introduction
0000000

Motivations

Question 2: What are superconductors/ superfluids?

- superconductivity: electrical resistivity drops suddenly to zero below T_c
- superfluidity: viscosity vanishes and thermal conductivity becomes infinite below T_c

History

- SC and SF first observed in the 1930's
- 1935 London's equations
- 1950 Landau- Ginzburg theory
- 1957 Bardeen- Cooper- Schrieffer theory

Creeping Helium II [Aarchiba, wikipedia.org/wiki/Superfluid]

New classes of superconductors

- 1986 cuprates as a new class of high- T_c superconductors ($T_c \sim 160 K$)
- 2008 iron pnictides as a new class of high- T_c superconductors ($T_c \sim 56K$)

Unlike BCS theory, the pairing mechanism of high- T_c superconductors at strong coupling is not well understood!

Introduction	QPT in holographic superfluids at finite baryon and isospin chemical potential	Summary
000000		

Motivations

Question 3: Why holographic?

- conventional methods provide very few tools to study physical systems at strong coupling
- holographic method (gauge/gravity duality) is a powerful tool to study strongly coupled field theories, in particular for computing dynamical transport properties of strongly coupled systems at finite temperature

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Introduction	QPT in holographic superfluids at finite baryon and isospin chemical potential	
000000		

Motivations

Question 3: Why holographic?

- conventional methods provide very few tools to study physical systems at strong coupling
- holographic method (gauge/gravity duality) is a powerful tool to study strongly coupled field theories, in particular for computing dynamical transport properties of strongly coupled systems at finite temperature

The gauge/gravity duality as a tool

Classical gravitational theory in d+1 spacetime dimensions \leftrightarrow

Large N_c gauge theory in *d* spacetime dimensions

Duality realized by the matching

- of the parameters of the two theories;
- the partition function (gravity) with generating functional for correlation functions (gauge).

Some properties

- The field theory lives on the boundary of the gravity theory
- The gauge/gravity duality describes weak/strong coupling duality

Layout

1 Introduction

Motivations Constructing holographic superfluids

QPT in holographic superfluids at finite baryon and isospin chemical potential Holographic superfluids in Einstein Yang-Mills theory Holographic superfluids with D3/D7 model

3 Summary

(日) (日) (日) (日) (日) (日) (日) (日)

Ingredients for constructing holographic superfluids

Landau- Ginzburg- Theory

- second order phase transition with complex scalar field ψ as order parameter
- the density of the superconducting charges is given by $|\psi(x)|^2$

The contribution of ψ to free energy is *assumed* to take the form

$$F = lpha (T - T_c) |\psi|^2 + \frac{\beta}{2} |\psi|^4 + \cdots$$

with positive constants α and β . Minimizing the free energy F

$$\begin{cases} T > T_c & F_{min} = F(\psi=0) \\ T < T_c & F_{min} = F(\psi\neq 0) \end{cases} \rightarrow \text{ associated with spontaneous breaking of U(1)}$$

local U(1) \rightarrow superconductivity, global U(1) \rightarrow superfluidity

Summary

Ingredients for constructing holographic superfluids

Landau- Ginzburg- Theory

- second order phase transition with complex scalar field ψ as order parameter
- the density of the superconducting charges is given by $|\psi(x)|^2$

The contribution of ψ to free energy is *assumed* to take the form

$$F = lpha (T - T_c) |\psi|^2 + \frac{\beta}{2} |\psi|^4 + \cdots$$

with positive constants α and β . Minimizing the free energy F

 $\begin{cases} T > T_c & F_{min} = F(\psi=0) \\ T < T_c & F_{min} = F(\psi\neq 0) \end{cases} \rightarrow \text{ associated with spontaneous breaking of U(1)}$

local U(1) \rightarrow superconductivity, global U(1) \rightarrow superfluidity

List of ingredients

- temperature
- charged field which can condense
- spontaneous breaking of an global U(1) symmetry
- tuning parameters (magnetic field, chemical potentials,...) <□▶<♂▶<≧▶<≧▶<≧▶<≧> ♡९♡

<code>QPT</code> in holographic superfluids at finite baryon and isospin chemical potential $_{\rm OOOOOOO}$

Summary

Constructing holographic superfluids

Minimal ingredients: (i) temperature; (ii) field which can condense and breaks U(1) symmetry spont.;

The original AdS/CFT correspondence [Maldacena, 1997]

Type IIB superstring theory in $AdS_5 \times S^5$ spacetime $\leftrightarrow \qquad \mathcal{N} = 4 \text{ SYM on the 4d} \\ \text{conformal boundary of } AdS$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $\ensuremath{\mathsf{QPT}}$ in holographic superfluids at finite baryon and isospin chemical potential $\ensuremath{\mathsf{ocococoo}}$

Summary

Constructing holographic superfluids

Minimal ingredients: (i) temperature; (ii) field which can condense and breaks U(1) symmetry spont.;

The original AdS/CFT correspondence [Maldacena, 1997]

Type IIB superstring theory \leftrightarrow $\mathcal{N} = 4$ SYM on the 4din $AdS_5 \times S^5$ spacetimeconformal boundary of AdS

Extension to finite temperature [Witten, 1998] at large N_c and large λ'_t Hooft-coupling

 $\begin{array}{rcl} \mbox{classical gravity theory} & \leftrightarrow & \mbox{finite temperature field theory} \\ \mbox{in } AdS \mbox{ black hole spacetime} & \mbox{on the boundary of } AdS \mbox{ black hole} \end{array}$

The black hole horizon radius is directly related to the temperature on the FT side.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

 $\ensuremath{\mathsf{QPT}}$ in holographic superfluids at finite baryon and isospin chemical potential $\ensuremath{\mathsf{ocococo}}$

Summary

Constructing holographic superfluids

Minimal ingredients: (i) temperature; (ii) field which can condense and breaks U(1) symmetry spont.;

The original AdS/CFT correspondence [Maldacena, 1997]

Type IIB superstring theory \leftrightarrow $\mathcal{N} = 4$ SYM on the 4din $AdS_5 \times S^5$ spacetimeconformal boundary of AdS

Extension to finite temperature [Witten, 1998] at large N_c and large λ'_t Hooft-coupling

classical gravity theory	\leftrightarrow	finite temperature field theory
in AdS black hole spacetime		on the boundary of AdS black hole

The black hole horizon radius is directly related to the temperature on the FT side.

One possibility for realizing (ii) is using the AdS/CFT dictionary

$$\mathcal{Z}_{\text{string}}\left[\phi\left(\vec{x},r\right)|_{r\to\infty}=\phi_{0}\left(\vec{x}\right)\right]\equiv\left\langle e^{\int d^{4}x\phi_{0}\left(\vec{x}\right)\mathcal{O}\left(\vec{x}\right)}\right\rangle_{\text{FT}}$$

to relate the operator $\mathcal{O}(\vec{x})$ describing the condensate with some field $\phi(\vec{x}, r)$ coupled to gravity in the bulk, and the task is finding stable *AdS* black hole with ϕ condensing at low temperature [Gubser, 2008], [Hartnoll, Herzog, Horowitz, 2008].

 $\ensuremath{\mathsf{QPT}}$ in holographic superfluids at finite baryon and isospin chemical potential $\ensuremath{\mathsf{ocococoo}}$

Summary

Constructing holographic superfluids

Minimal ingredients: (i) temperature; (ii) field which can condense and breaks U(1) symmetry spont.;

The original AdS/CFT correspondence [Maldacena, 1997]

Type IIB superstring theory
in $AdS_5 \times S^5$ spacetime $\mathcal{N} = 4$ CFT on the 4d
conformal boundary of AdS

Extension to finite temperature [Witten, 1998] at large N_c and large λ'_t Hooft-coupling

classical gravity theory	\leftrightarrow	finite temperature field theory
in AdS black hole spacetime		on the boundary of AdS black hole

The black hole horizon radius is directly related to the temperature of the dual FT.

Another possibility for realizing (ii) is using flavor D-branes to introduce fundamental matter which condenses at low temperature. This so called *top down* approach (dual field theory is known) using D3/D7 model is the first stringy realization of holographic p-wave superfluid [Ammon, Erdmenger, Kerner and Kaminski, 2008].

 $\ensuremath{\mathsf{QPT}}$ in holographic superfluids at finite baryon and isospin chemical potential $\ensuremath{\mathsf{ocoooooo}}$

Summary

Constructing holographic superfluids

Minimal ingredients: (i) temperature; (ii) field which can condense and breaks U(1) symmetry spont.;

The original AdS/CFT correspondence [Maldacena, 1997]

Type IIB superstring theory
in $AdS_5 \times S^5$ spacetime $\mathcal{N} = 4$ CFT on the 4d
conformal boundary of AdS

Extension to finite temperature [Witten, 1998] at large N_c and large λ'_t Hooft-coupling

classical gravity theory	\leftrightarrow	finite temperature field theory
in AdS black hole spacetime		on the boundary of AdS black hole

The black hole horizon radius is directly related to the temperature of the dual FT.

Another possibility for realizing (ii) is using flavor D-branes to introduce fundamental matter which condenses at low temperature. This so called *top down* approach (dual field theory is known) using D3/D7 model is the first stringy realization of holographic p-wave superfluid [Ammon, Erdmenger, Kerner and Kaminski, 2008].

Extra ingredients: (iii) magnetic field; (iv) chemical composition (isospin, baryon chemical potential);

Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Superfluids in Einstein Yang-Mills theory

Minimal ingredients:	(i) temperature;
	(ii) field condenses at low T and breaks $U(1)$ spontaneously;
Extra ingredients:	(iii) isospin and (iv) baryon chemical potential;

Consider the U(2) Einstein-YM theory in (4+1)-dimensional asymptotically AdS space

$$\begin{split} S &= \int \mathrm{d}^5 x \frac{\sqrt{-g}}{\kappa_5^2} \left[\frac{1}{2} (\mathcal{R} - \Lambda) - \frac{\hat{\alpha}^2_{\rm YM}}{4} F^a_{\mu\nu} F^{a\mu\nu} - \frac{\hat{\alpha}^2_{\rm MW}}{4} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} \right] \\ SU(2) \text{-field strength} : \ F^a_{\mu\nu} &= \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + \epsilon^{abc} A^b_\mu A^c_\nu \,, \\ U(1) \text{-field strength} : \ \mathcal{F}_{\mu\nu} &= \partial_\mu \mathcal{A}_\nu - \partial_\nu \mathcal{A}_\mu \,. \end{split}$$

Summary

Superfluids in Einstein Yang-Mills theory

Minimal ingredients:	(i) temperature;
	(ii) field condenses at low T and breaks $U(1)$ spontaneously;
Extra ingredients:	(iii) isospin and (iv) baryon chemical potential;

Consider the U(2) Einstein-YM theory in (4+1)-dimensional asymptotically AdS space

$$\begin{split} S &= \int \mathrm{d}^5 x \frac{\sqrt{-g}}{\kappa_5^2} \left[\frac{1}{2} (\mathcal{R} - \Lambda) - \frac{\hat{\alpha}_{\rm YM}^2}{4} F_{\mu\nu}^a F^{a\mu\nu} - \frac{\hat{\alpha}_{\rm MW}^2}{4} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} \right] \\ SU(2) \text{-field strength} : \ F_{\mu\nu}^a &= \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + \epsilon^{abc} A_\mu^b A_\nu^c \ , \\ U(1) \text{-field strength} : \ \mathcal{F}_{\mu\nu} &= \partial_\mu \mathcal{A}_\nu - \partial_\nu \mathcal{A}_\mu \ . \end{split}$$

Taking following ansatz for constructing charged black hole solutions with a vector hair

$$\begin{aligned} A &= \phi(r)\tau^{3} dt + w(r)\tau^{1} dx, \qquad \mathcal{A} &= \psi(r) dt, \\ ds^{2} &= -\frac{N(r)\sigma(r)^{2} dt^{2}}{N(r)^{2}} dr^{2} + \frac{1}{N(r)} dr^{2} + r^{2}f(r)^{-4} dx^{2} + r^{2}f(r)^{2} (dy^{2} + dz^{2}) \end{aligned}$$

The gauge/gravity dictionary relates quantities from both sides.

Summary

Superfluids in Einstein Yang-Mills theory

Minimal ingredients:	(i) temperature;
	(ii) field condenses at low T and breaks $U(1)$ spontaneously;
Extra ingredients:	(iii) isospin and (iv) baryon chemical potential;

The ansatz

$$\begin{aligned} A &= \phi(r)\tau^{3} dt + w(r)\tau^{1} dx, \qquad \mathcal{A} &= \psi(r) dt, \\ ds^{2} &= -N(r)\sigma(r)^{2} dt^{2} + \frac{1}{N(r)} dr^{2} + r^{2}f(r)^{-4} dx^{2} + r^{2}f(r)^{2} (dy^{2} + dz^{2}). \end{aligned}$$

The gauge/gravity dictionary relates quantities from both sides:

- temperature $T \leftrightarrow r_h$ with $N(r_h)\sigma(r_h)^2 = 0$
- conserved current $J_{\mu} \leftrightarrow A_{\mu}$ in the sense $A_{\mu}(r_{\infty}) = s_{\mu} + e_{\mu}r^{-1} + \mathcal{O}(r^{-2})$ The time-component of the gauge field $\psi(r)$ gives the $U(1)_B$ baryon chemical potential μ_B and the density $\langle J_t^0 \rangle \phi(r)$ gives the $SU(2)_l$ isospin chemical potential μ_l and the density $\langle J_t^3 \rangle$
- demanding the boundary condition w(r_∞) = 0 + (J¹_x)r⁻¹ + O(r⁻²) → condensate with no source term, i.e. spontaneous symmetry breaking
- gauge symmetries in the bulk correspond to global symmetries in the dual FT
 → holographic superfluid

QPT in holographic superfluids at finite baryon and isospin chemical potential $_{\text{OO}\text{OO}\text{OO}\text{OO}}$

Summary

Superfluids in Einstein Yang-Mills theory

Results for the fully back-reacted case $\alpha_{YM} \neq 0$, $\alpha_{MW} \neq 0$

• For w(r) = 0 the AdS Reissner Nordström black hole solves the EoM \rightarrow dual to the normal conducting state

$$ds^{2} = -N(r)dt^{2} + \frac{1}{N(r)}dr^{2} + r^{2}d\vec{x}^{2}, \quad \phi(r) = \mu_{I} - \frac{q_{I}}{r^{2}}, \quad \psi = \mu_{B} - \frac{q_{B}}{r^{2}},$$
$$N(r) = r^{2} - \frac{2}{r^{2}}\left(\frac{r_{h}^{4}}{2} + \frac{\alpha_{YM}^{2}q_{I}^{2} + \alpha_{MW}^{2}q_{B}^{2}}{3r_{h}^{2}}\right) + \frac{2(\alpha_{YM}^{2}q_{I}^{2} + \alpha_{MW}^{2}q_{B}^{2})}{3r^{4}},$$

QPT in holographic superfluids at finite baryon and isospin chemical potential $_{00\bullet0000}$

Summary

Superfluids in Einstein Yang-Mills theory

Results for the fully back-reacted case $\alpha_{YM} \neq 0$, $\alpha_{MW} \neq 0$

For w(r) = 0 the AdS Reissner Nordström black hole solves the EoM
 → dual to the normal conducting state

$$\begin{split} \mathrm{d}s^2 &= -N(r)\mathrm{d}t^2 + \frac{1}{N(r)}\mathrm{d}r^2 + r^2\mathrm{d}\vec{x}^2 \,, \quad \phi(r) = \mu_l - \frac{q_l}{r^2} \,, \quad \psi = \mu_B - \frac{q_B}{r^2} \,, \\ N(r) &= r^2 - \frac{2}{r^2} \left(\frac{r_h^4}{2} + \frac{\alpha_{\rm YM}^2 q_l^2 + \alpha_{\rm MW}^2 q_B^2}{3r_h^2} \right) + \frac{2(\alpha_{\rm YM}^2 q_l^2 + \alpha_{\rm MW}^2 q_B^2)}{3r^4} \,, \end{split}$$

• For $w(r) \neq 0$ there is no analytical solution for the metric, ϕ and $\psi \rightarrow$ numerics

Instability of the RN solution

$$\left(\frac{\mu_B}{\mu_I}\right)_c = \frac{\sqrt{1 - 3\alpha_{\rm YM}^2}}{\sqrt{3}\,\alpha_{\rm MW}}$$

Semi back-reacted case α_{YM} = 0

QPT in holographic superfluids at finite baryon and isospin chemical potential $_{0000000}$

Summary

Superfluids in Einstein Yang-Mills theory

Results for the semi back-reacted case $\alpha_{YM} = 0$, $\alpha_{MW} \neq 0$

• For $w(r) \neq 0$, analytical solutions can be obtained via expansion in small $\delta \equiv \mu_B$ and $\epsilon \propto \langle J_x^1 \rangle$

Difference in free energy

$$F_{\rm sf} - F_{\rm nf} = \frac{r_{H}^{4}}{4} \left(-\frac{71}{53,760} \epsilon^{4} + \mathcal{O}(\delta^{p} \epsilon^{q}) \right) \sim (T_{c} (\delta) - T)^{2}$$

Summary

Holographic superfluids with D3/D7 model

- Two description of D_p-branes
 - p-spatial extended objects where open strings can end
 - massive objects as solution of supergravity
- Extending the AdS/CFT by flavor probe D_p-branes [Karch, Katz, 2002]

- Field theory at the probe limit $N_f \ll N_c, N_c \gg 1$
 - $\mathcal{N}=4$ gauge multiplet \rightarrow massless open string modes on the D3 branes
 - $\mathcal{N}=2$ SYM hypermultiplets \rightarrow strings between the D3 and D7 branes
- The dynamics of the flavor branes are described by the DBI action

$$S_{D7} = -N_f T_{D7} \int d^8 \xi \sqrt{-\det(g_{ab} + (2\pi\alpha')F_{ab})}$$

Summary

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Holographic superfluids with D3/D7 model

Minimal ingredients:	(i) temperature;
	(ii) field condenses at low T and breaks $U(1)$ spontaneously;
Extra ingredients:	(iii) isospin and (iv) baryon chemical potential;

Stack of D3 and temperature

$$ds^{2} = \frac{\varrho^{2}}{2R^{2}} \left(-\frac{f^{2}}{\tilde{f}} \mathrm{d}t^{2} + \tilde{f} \mathrm{d}\bar{x}^{2} \right) + \left(\frac{R}{\varrho} \right)^{2} (\mathrm{d}\varrho^{2} + \varrho^{2} \mathrm{d}\Omega_{5}^{2}),$$

$$f(\varrho) = 1 - \frac{\varrho_{H}^{4}}{\varrho^{4}}, \quad \tilde{f}(\varrho) = 1 + \frac{\varrho_{H}^{4}}{\varrho^{4}}$$

- Introducing two coincident flavor probe D7-branes \rightarrow world volume field theory $U(2) = U(1)_B \times SU(2)_I$
- Introducing baryon and isospin chemical potential with $A^0_t(\varrho) \tau^0 \mathrm{d}t$ and $A^3_t(\varrho) \tau^3 \mathrm{d}t$

$$\mu_B = \lim_{\varrho \to \infty} A_t^0(\varrho), \qquad \mu_I = \lim_{\varrho \to \infty} A_t^3(\varrho)$$

- Introducing the field $A_x^1 \tau^1 dx$ which condenses and breaks the $U(1)_3$
- Solving the non-Abelian DBI action

Summary

Holographic superfluids with D3/D7 model

Results for the D3/D7 model Phase transition and phase diagram

- critical temperature first increases

- with increasing μ_B/μ_I
- transition temperature is zero at $\mu_B/\mu_I \approx 1.23$
- second order phase transition

Phase diagram for D3/D7 model at finite μ_B and μ_I

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Introduction
0000000

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Summary

Conclusion

- Constructed holographic superfluids using back-reacted Einstein-Yang-Mills theory and D3/D7 model at finite baryon and isospin chemical potential
- In both cases there are quantum phase transitions
- The quantum phase transitions in the two models may belong to different classes
- Still no analytical proof that such models might provide descriptions for quantum critical points

Summary

Conclusion

- Constructed holographic superfluids using back-reacted Einstein-Yang-Mills theory and D3/D7 model at finite baryon and isospin chemical potential
- In both cases there are quantum phase transitions
- The quantum phase transitions in the two models may belong to different classes
- Still no analytical proof that such models might provide descriptions for quantum critical points
- Gauge/gravity duality serves as a powerful tool to study strongly coupled systems in field theory. Simple gravity models of superconductors/ superfluidity should be seen as some first steps toward applying this tool to better understand high *T_c* superconductivity.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summary

Conclusion

- Constructed holographic superfluids using back-reacted Einstein-Yang-Mills theory and D3/D7 model at finite baryon and isospin chemical potential
- In both cases there are quantum phase transitions
- The quantum phase transitions in the two models may belong to different classes
- Still no analytical proof that such models might provide descriptions for quantum critical points
- Gauge/gravity duality serves as a powerful tool to study strongly coupled systems in field theory. Simple gravity models of superconductors/ superfluidity should be seen as some first steps toward applying this tool to better understand high *T_c* superconductivity.

Thank you for attention!