・ロト ・聞ト ・ヨト ・ヨト

3

Gauge/Gravity Duality and its Applications to Holographic Superconductors

Susanne Barisch

14.01.2011

Susanne Barisch

Overview

1 Introduction to Gauge/Gravity Duality

General Results String Theory Background for AdS/CFT Mathematical Formulation of AdS/CFT Generalizations and Applications

2 Holographic Superconductors

Setup Analytical and Numerical Calculations

3 Outlook

Susanne Barisch

General Results

Concept of Gauge/Gravity Duality

- Equivalence of some QFTs to (quantum) gravity theories in a particular limit: The gravity theory becomes classical and the QFT strongly coupled.
- It originates from string theory.
- Generalization of the AdS/CFT correspondence (AdS: Anti-de-Sitter spacetime, CFT: Conformal field theory)

General Results

Holographic Superconductors

Outlook

Maldacena's Conjecture on AdS/CFT

4d CFT, i.e. supersymmetric SU(N) Yang-Mills theory, is equivalent to a superstring theory on a 10d spacetime involving AdS space!

Susanne Barisch

CFT in d=4

- Conformal coordinate transformations leave angles unchanged.
- There are several possibilities for such transformations:

Translations, rotations, dilations and so called special conformal transformations.

 In a conformal field theory fields transform covariantly under conformal coordinate transformations. **General Results**

Outlook

Anti-de-Sitter Space

• The (p+2)-dimensional AdS space is represented by the hyperboloid

$$X_0^2 + X_{p+2}^2 - \sum_{i=1}^{p+1} X_i^2 = L^2$$

which is embedded in (p+3)-dimensional space. L denotes the AdS radius.

• The metric is given by

$$ds^{2} = -dX_{0}^{2} - dX_{p+2}^{2} + \sum_{i=1}^{p+1} dX_{i}^{2}.$$

イロト イポト イヨト イヨト

• AdS space has constant negative curvature.

Susanne Barisch

Open String Perspective

• D3-branes:

(3+1)-dimensional hypersurfaces in flat (9+1)-dimensional space on which open strings can end (the "D" stands for Dirichlet boundary conditions).

• Low energy limit:

Dynamics described by $\mathcal{N}{=}4$ SYM theory.

• Maldacena limit $(\alpha' \to 0 \text{ but } \frac{r}{\alpha'} \text{ constant for an arbitrary } r)$: Open strings and closed strings decouple.

RESULT:

 $\mathcal{N}{=}4$ SYM and 10d SUGRA

Closed String Perspective

• D3-branes:

Solutions of low energy limit of superstring theory (i.e. SUGRA). They are massive charged objects which curve the surrounding spacetime.

• Metric:

$$ds^{2} = H(r)^{-\frac{1}{2}} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + H(r)^{\frac{1}{2}} d \overrightarrow{y}^{2}$$

with $H(r) = 1 + \frac{L^4}{r^4}$.

• Two asymptotic regions: $r \to \infty$ and $r \to 0$: $r \to \infty$: 10d flat space. $r \to 0$ (near horizon region): $H(r) \sim \frac{L^4}{r^4}$

Susanne Barisch

- Maldacena limit: Closed strings in the two asymptotic regions decouple.
- Near horizon limit of the metric:

$$ds^{2} = \frac{r^{2}}{L^{2}}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + \frac{L^{2}}{r^{2}}dr^{2} + L^{2}d\Omega^{2}$$

This is the metric of $AdS_5 \times S^5$!

RESULT: Type IIB SUGRA on \mathbb{R}^{9+1} and SUGRA on $AdS_5\times S^5$

Susanne Barisch

イロト 不得下 イヨト イヨト 二日

Summary

The low energy limit gives two decoupled theories from both perspectives:

- Open strings: Type IIB SUGRA on \mathbb{R}^{9+1} and $\mathcal{N}{=}4$ SYM in d=3+1
- Closed strings:

Type IIB SUGRA on \mathbb{R}^{9+1} and SUGRA on $AdS_5 \times S^5$

The symmetries agree:

- $\mathcal{N}=4$ SYM: $SO(4,2) \times SU(4)_R$
- $AdS_5 \times S^5$: $SO(4,2) \times SO(6)$

The Field-Operator-Map

- One-to-one map between gauge invariant operators in the CFT and SUGRA fields.
- Interpretation: SU(N) $\mathcal{N}=4$ SYM lives on the boundary of AdS_5 ("Holography").
- In $AdS_5 \times S^5$ look at the Klein-Gordon equation for a scalar field:
 - Expand all fields in spherical harmonics, schematically:

$$\phi(\overrightarrow{z},\overrightarrow{y}) = \sum_{\Delta \geq 0} \phi_{\Delta}(\overrightarrow{z}) Y_{\Delta}(\overrightarrow{y})$$

イロト 不得下 イヨト イヨト 二日

• Solve the resulting wave equation on 5d AdS space.

Susanne Barisch

Mathematical Formulation of AdS/CFT

 Two independent solutions with different asymptotic behavior for z₀ → 0 ([→]z = (z₀, z') with z₀ ~ ¹/_r):

$$\phi_{\Delta}(z_0, z') \sim \begin{array}{c} z_0^{\Delta} \\ z_0^{4-\Delta} \end{array}$$

normalizable non – normalizable

イロト 不得下 イヨト イヨト 二日

• Define boundary fields: $\bar{\phi}_{\Delta}(z') = \lim_{z_0 \to 0} \phi_{\Delta}(z_0, z') z_0^{\Delta - 4}$

Λ

• General expansion for $z_0 \rightarrow 0$:

$$\phi_{\Delta}(z_0, z') \sim \langle \mathcal{O}_{\Delta} \rangle z_0^{\Delta} + \bar{\phi}_{\Delta}(z') z_0^{4-\Delta}$$

Here $\langle \mathcal{O}_{\Delta} \rangle$ is the VEV of an Operator \mathcal{O}_{Δ} in the dual field theory and the boundary field $\bar{\phi}_{\Delta}$ is its source.

• The generating functional for all correlators of the operator \mathcal{O}_{Δ} is given in terms of the source fields!

Field Theories with Finite Temperature

• The AdS Schwarzschild black hole (in Euclidean signature) has the metric

$$ds^{2} = \frac{r^{2}}{L^{2}}(f(r)d\tau^{2} + dx^{2}) + \frac{L^{2}}{r^{2}}\frac{1}{f(r)}dr^{2} + L^{2}d\Omega_{5}^{2}$$

with $f(r) = 1 - \frac{r_H^4}{r^4}$ and r_H the horizon.

• The Hawking temperature of the black hole becomes the temperature of the field theory at the boundary:

$$r_H = T\pi L^2$$

• It is possible to add charges (e.g. adding electric charge gives the Reissner-Nordström solution).

Susanne Barisch

ヘロト 人間 とくほ とくほ とう

3

Applications

- Quark-gluon-plasma (strongly coupled system)
- Condensed matter systems as e.g. superconductors

Susanne Barisch

Holographic Superconductors

イロン イ理 とく ヨン ト ヨン・

3

A Holographic Superconductor

Gravity dual of a superconductor: A hairy black hole!

Susanne Barisch

Setup

- We consider a charged AdS black hole (Reissner-Nordström) in the probe limit (i.e. we neglect the back-reaction on the metric).
- This gives AdS Schwarzschild together with an electric field (i.e. we have a charged horizon but this does not affect the metric).
- Now: Add an additional component to the gauge field ("hair").
- More precisely: We solve the YM equations in the AdS_4 background for the following SU(2) gauge field ansatz:

$$A = \Phi(r)\tau^3 dt + w(r)\tau^1 dx$$

ヘロト 人間 とくほ とくほ とう

Conductivities and Green's Functions

• We have the following formula connecting the retarded Green's function and the conductivity:

$$\sigma^{ab}_{ij}(\omega) = \frac{i}{\omega} G^{R,ab}_{ij}(\omega,0)$$

• For large r the components A^a_i of a non-Abelian gauge field can be expanded as

$$A_i^a = e^{-i\omega t} \left[A_i^{a,(0)} + \frac{A_i^{a,(1)}}{r} + \mathcal{O}(r^{-2}) \right] \,.$$

• This is related to the retarded Green's function by

$$G^{R,ab}_{ij} = -\frac{2}{\kappa^2} \frac{\delta A^{a,(1)}_i}{\delta A^{b,(0)}_j} \, .$$

Susanne Barisch

3

Outlook

Fluctuations

Setup

• We consider perturbations $A \rightarrow A + a$ with

$$a=e^{-i\omega t}(a_y^1\tau^1+a_y^2\tau^2)dy\,.$$

and derive the e.o.m. at the linearized level.

• Ansatz for the near horizon expansion of the fluctuations:

$$a_y^1 = (r-1)^{-i\omega/4\pi T} \left[1 + a_y^{1(1)}(r-1) + \dots \right],$$

$$a_y^2 = (r-1)^{-i\omega/4\pi T} \left[1 + a_y^{2(1)}(r-1) + \dots \right].$$

This means we have ingoing boundary conditions at the horizon!

Susanne Barisch

• Near boundary expansion for the fluctuations:

$$a_y^1 = A_y^{1,(0)} + \frac{A_y^{1,(1)}}{r} + \dots ,$$

$$a_y^2 = A_y^{2,(0)} + \frac{A_y^{2,(1)}}{r} + \dots$$

This can be used to calculate the Green's functions/ conductivities.

Susanne Barisch

Analytical Calculations

• We can have a look at the normal state, i.e. a background with w = 0. This gives the Reissner-Nordström solution

$$\tilde{\Phi} = \mu \left(1 - \frac{1}{r} \right)$$

with μ the chemical potential.

• Expand the fluctuations in ω and μ (as long as these quantities are assumed to be small). This gives the Green's functions/conductivities.

Introduction to Gauge/Gravity Duality

Outlook

Analytical and Numerical Calculations

• RESULT:

$$G_{yy}^{R,11}(k=0,\omega) = -i\omega - 0.358\mu^2 + \dots$$

$$\sigma_{yy}^{11} = 1 - i\frac{0.358\mu^2}{\omega} + \dots$$

For $\omega \to 0 \ {\rm Im}(\sigma_{\rm yy}^{11})$ has a pole with negative residue!

• CONCLUSION:

From the Kramers-Kronig relations (which connect real and imaginary part of a holomorphic function) follows that the real part of σ_{yy}^{11} must have a negative delta function contribution at $\omega = 0$.

• This "wrong" sign seems to be special in d = 4!

Susanne Barisch

Introduction to Gauge/Gravity Duality

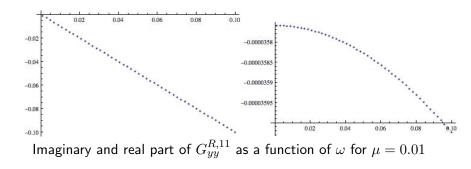
Holographic Superconductors

(日) (同) (三) (三)

Outlook

Numerical Calculations

The numerical results for the normal state agree with the analytical calculations:



Susanne Barisch

イロト 不得下 イヨト イヨト 二日

Numerics

- The conductivities in the superconducting state can only be calculated numerically.
- The same problem concerning the sign of the residue appears!
- We can calculate the dependence of the conductivity on the frequency ω in both states.
- We can examine the μ dependence of the residue in the normal state.
- Calculation of the residue for different temperatures in the superconducting state is possible.

イロト 不得下 イヨト イヨト 二日

Conclusion and Outlook

- At the moment we need to understand what the negative residue actually means.
- We trust in the numerics since the results agree with the analytical calculations, so what is the correct interpretation of the negative sign in the conductivity? Does it indicate an instability?
- A solution to this problem might provide a better understanding of non-Abelian gauge fields in gauge/gravity duality.