# Light Dark Matter and Neutrinos from the Sun



Caroline B. Bräuninger (TUM/MPP)

in collaboration with Rolf Kappl and Martin W. Winkler

### Dark Matter direct detection



### Detection techniques:

- ionization
- heat
- scintillation

### A direct detection of Dark Matter?



### **CoGeNT**

- \*rise in spectrum at low energies
- \*background? no satisfactory explanation

### **CDMS**

\*2 events survive all discrimination and subtraction procedures

### **DAMA/Libra**

- \*observe annual modulation
- \*channeling effect? different mass/cross section ranges

WIMPs with m  $\sim 5$  - 10 GeV and  $\sigma_n \sim 10^{-40}$  cm<sup>2</sup> could fit all these signals.

### Which SUSY models accomodate such WIMPs?

MSSM: Higgs known to be heavy ⇒ cross section suppressed

Solution: singlet-extended SUSY models allow for lighter Higgs bosons as intermediate particles!



N.B.:There is also a recent paper where a complex singlet is added to SM (CSM).They can also explain these signals.

Barger, Gao, McCaskey, Shaughnessy '10

## Singlet-extended SUSY models

## MSSM + gauge singlet superfield S

$$W = \mu H_u H_d + \lambda S H_u H_d + \frac{\mu_s}{2} S^2 + \frac{\kappa}{3} S^3 + \text{Yukawa}$$

NMSSM:  $Z_3$  symmetry  $\rightarrow$  solution to  $\mu$  - problem S-MSSM: allow all terms  $\rightarrow$  no solution to  $\mu$  - problem

New particles: CP-even and CP-odd scalar  $h_s$  and  $a_s$  , singlino  $\tilde{\boldsymbol{s}}$ 

Decoupling limit of MSSM Higgs sector: mixing only with light MSSM Higgs:

Two mass eigenstates:

$$h_1$$
 mainly singlet

$$h_2 \sim \text{light MSSM Higgs}$$

## Can singlet-extended SUSY models explain CoGeNT/DAMA?

NMSSM: lightest neutralino mostly bino  $\rightarrow$  small coupling to singlet like Higgs  $\rightarrow$  cross section to small

S-MSSM: singlino DM with low mass & correct cross section thanks to mediation by light mainly singlet Higgs

Kappl, Ratz, Winkler '10 Belikov, Gunion, Hooper, Tait '10

## Do we expect other signals from light singlino DM?



Light DM and  $\nu$  from the Sun

## Dark Matter capture and annihilation in the Sun

DM is captured inside Sun  $\leftrightarrow$  annihilations deplete DM population

$$\Gamma_{\rm ann.} = \frac{\Gamma_{\rm capt.}}{2} \tanh^2(t_0/\tau_A)$$

 $\Gamma_{\rm ann.} = \frac{\Gamma_{\rm capt.}}{2} \tanh^2(t_0/\tau_A)$  Capture/annihilation equilibrium is reached:  $\Gamma_{\rm ann.} = \frac{\Gamma_{\rm capt.}}{2}$ 



## Annihilations of singlino Dark Matter



- Hadronization of quarks and lepton decay simulated with Pythia
- $\blacksquare$  Free decay only if  $\gamma \tau_{\rm dec.} < \tau_{\rm stop}$

## Neutrino propagation: oscillations, scatterings...



Cirelli, Fornengo, Montaruli, Sokalski, Strumia, Vissani '05 Blennow, Edsjö, Ohlsson '07

$$\frac{\mathrm{d}\rho}{\mathrm{d}r} = -i\left[H,\rho\right] + \frac{\mathrm{d}\rho}{\mathrm{d}r}\bigg|_{\mathrm{CC}} + \frac{\mathrm{d}\rho}{\mathrm{d}r}\bigg|_{\mathrm{NC}} + \frac{\mathrm{d}\rho}{\mathrm{d}r}\bigg|_{\mathrm{injected}}$$
oscillations
$$\begin{array}{c} \text{scatterings} \\ \text{only relevant for} \\ \text{E}_{\mathrm{V}} \gtrsim 100 \text{ GeV} \end{array}$$

$$H = \frac{m^{\dagger}m}{2E_{\nu}} + \sqrt{2}G_F N_e \text{diag.}(1,0,0)$$

Oscillations are averaged by:

- □ large variation in baseline
- finite energy resolution of detector

## Detection of neutrinos at Superkamiokande



### Conclusions

- Direct detection of DM? If, yes: light DM with relatively large scattering cross section
- Possible in singlet extended MSSM
- Possible signal: neutrinos generated in DM annihilations inside Sun:
  - Accumulation of DM inside Sun
  - Annihilation + showering
  - Propagation of neutrinos to the Earth: oscillations
  - → Detection of neutrinos in Super-Kamiokande

## Neutrino propagation for tri-bi-maximal mixing

### Lehnert, Weiler '08

$$H' = \begin{pmatrix} H_{2\times2} & 0 \\ 0 & 0 & \frac{\Delta m_{32}^2}{2E_{\nu}} \end{pmatrix} \qquad |3\rangle_m = |3\rangle = \sum_{\alpha} U_{\alpha3}^* |\alpha\rangle = \sin\theta_{23} |\mu\rangle + \cos\theta_{23} |\tau\rangle$$

### 10 MeV ~ 10 GeV adiabatic approximation:

mass eigenstates in matter ≈ instantaneous eigenstates that diagonalize  $H_{2\times2}$  at point r, no level crossings

Centre of the Sun: 
$$|1,0\rangle \simeq |e\rangle$$
,  $|2,0\rangle = \cos\theta_{23} |\mu\rangle - \sin\theta_{23} |\tau\rangle$  
$$\rho(0) = w_e |e\rangle \langle e| + w_\mu |\mu\rangle \langle \mu| + w_\tau |\tau\rangle \langle \tau|.$$

Off-diagonal elements acquire phase factor  $\exp\left(-i\Delta m_{kj}^2L/2E_{\nu}\right)$ 

 $\rightarrow$  averages to zero  $\rightarrow$  drop off-diagonal elements

Evolution through the sun:  $|1,0\rangle \rightarrow |2\rangle$ ,  $|2,0\rangle \rightarrow |1\rangle$ ,  $|3,0\rangle \rightarrow |3\rangle$ 

$$P_{\nu_{\odot} \to \nu_{\beta}} = \langle \beta | \rho(r > R_{\odot}) | \beta \rangle = w_e |U_{\beta 2}|^2 + \frac{1}{2} (w_{\mu} + w_{\tau}) \left( 1 - |U_{\beta 2}|^2 \right)$$

Tribimaximal mixing: 
$$P_{\nu_{\odot} \to \nu_e} = P_{\nu_{\odot} \to \nu_{\mu}} = P_{\nu_{\odot} \to \nu_{\tau}} = \frac{1}{3}$$