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Calabi-Yaus in String Theory

Unification of Particles and Forces with Strings




Calabi-Yaus in String Theory

Consistency of Superstrings

Prediction of dimension

@ Superstring theories are theories with world sheet (hence space
time) super symmetry

@ In Order to maintain consistency of the superstring, D = 10 is
required

@ Choose for example X = RY3 x Mg




Calabi-Yaus in String Theory

Shape of Extra Dimensions

— compactification space

How does the compactification space look like?

@ The heterotic super string has A/ =1 in 10 dimensions

@ Depending on the compactification space some of them
survive some don't

@ For a realistic model we want A/ = 1 in 4 dimensions

@ [hus only i of the original super symmetry survives
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@ Toroidal compactification
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Calabi-Yaus in String Theory

How to Determine the right Compactification Space?

Two examples

@ Toroidal compactification

= N =4 in 4 dimensions $§

@ Calabi-Yau compactification

= N =1 in 4 dimensions QF




Calabi-Yaus in String Theory

What is a Calabi-Yau?

@ T[he holonomy group of a space the group transformations
that can be performed on a tangent vector via parallel
transport

@ For the 2-sphere the holonomy group is simpy SO(2, R)

@ A space M is called Calabi-Yau if its holonomy group is

SU(n), n =dimMl.




Calabi-Yaus in String Theory

Calabi-Yau it is

@ In fact the SU(3) holonomy is necessary to break the correct
amount of SUSY in this context

@ Hence we need a way to construct Calabi-Yau Manifolds in
string theory

@ How?
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Projective Spaces

© Projective Spaces



Projective Spaces

What is a projective space?

The real projective space RP"

o RP" is the space consisting of all straight lines in R""!
through the origin
o Consider for instance RP?:

It is given by the unit sphere where antipodal points are
identified




Projective Spaces

Definition of RP"

Points on a line are identified

@ As mentioned, elements of the projective space RP? are
straight lines through the origin of R?

@ Therefore a point P = (x,y, z) € R? is identified with a point
P’ = (2',4/.2') € R? iff 3 a constant r € R* = R — {0}, such
that

\ (2’9, 2) = (ra,ry,rz)

P P

N
Cd

o We say then (2/,4/,2") ~p+ (x,y, 2). Notice: The point
(0,0,0) is NOT an element of RP?
3

o Hence RP?2 = B

NR*




Projective Spaces

From C? to CIP?

The same story applies to complex spaces

@ Define CP? as the space of all straight lines through the origin
o This time a point u = (uy,uz, u3) € C? is identified with a
point u' = (u), ub, uf) iff there is a constant
c € C* = C — {0}, such that

('U'i: u!2: _ué) — (C LRl e ug)

@ Notice: Since we deal with complex spaces, the exponent,
denoting the complex dimension is twice the real dimension,
e.g. dim(C?) = 6 and dim(CP?) = 4. Again as before, e.g.
cp2= &

~J
.C*




CYs in Projective Spaces

Calabi-Yaus in Projective Spaces

© Calabi-Yaus in Projective Spaces



CYs in Projective Spaces

Algebraic varieties in R*

What is an algebraic variety V of R37
o V in R? is the zero set of a function f: R? — R
@ Formally V —{ (z,y,z) € R3 such that f(z,y,2) = O}
@ Unless f =0, dlm(V) = dlm(]Rg) —1=2.

@ Choose for instance f(x, v, 2) —z2y? + 9?22 4+ 2% + 100

(x +9y + 22 —1)3 (2% +y° + 2

2_1)3




CYs in Projective Spaces

Algebraic varieties in CP*

One can of course also define an algebraic variety in CP*
(lack of imagination)

o CP* = ~e hence an algebraic variety @ inside CP* can be
defined by functlon G :CP* — C:

Q) = {(ul: Uo, U3, Uy, Us) € CP* G(uy, uo, ug, Uy, us) = 0}

@ One can prove that a variety in CP* is Calabi-Yau, iff it is a
polynomial, homogeneous of degree 5:

Q(uy, ug, us, uq, us) = ¢y u-“i’ + c2 'ui‘uz + C3 u'%u% + ...

TULULUZUALUS + ... T C1924 uflu% -+ C195 uiugl -+ C196 ug

For arbitrary coefficients ¢y, ..., c126 € C.




CYs in Projective Spaces

The Quintic and the (n + 1)-tic

@ [he variety (), since it is a degree 5 polynomial is also referred
to as " ‘the Quintic”’ in CP* and denoted as Q =: CP*[5] in
order to indicate the degree of the homogeneous polynomial.

@ Taking a certain two dimensional section of the Quintic, we
obtain the following plot:

@ In general it holds: A homogeneous polynomial of degree
n+ 1 in CP", namely CP"[n + 1] is always Calabi-Yau
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Calabi-Yaus in Toric Varieties

@ Calabi-Yaus in Toric Varieties



CYs in Toric Varieties

Weighted Projective Spaces

Curves instead of straight lines in RP!

o We introduced RP! to be the set of straight lines through the
origin, e.g. (1,1) ~p= (7, 7).

@ [his can be generalized in a straight forward way. For
instance identify parabola of R?, namely

(z,y) ~p+ (rz,°y) for example: (1,1) ~px (7, 77)

100 |

=100 |

=200 -




CYs in Toric Varieties

Weighted Projective Spaces

Curves instead of straight lines in RP!

(z,y) ~p+ (rz,7%y) for example: (1,1) ~p« (r,7?)

@ Such a space we call a weighted projective space, where the
weights are defined by the powers of r

@ Our example here has weights 1 and 2 and is denoted by RP; 5
@ Hence a projective space can then be written as

RP*"=RPy 1.1

N _
"v-

(n+1)—times




CYs in Toric Varieties

Weighted Projective Spaces

The complex case:

@ [he same thing can be done to define a complex weighted
projective space.

@ For instance choose CP; 11 12. It is again C® — {0} where
points are identified via:

{(ul,ug,ug,-zq,u5) ~ (Clul ctus, tug, ctuy, e ug)} ,c#£ 0

@ We now say that uq, ..., uy have degree 1 and us has degree 2

@ Using this definition of the degree of a polynomial in
(w1, ..., u5) one can show that every polynomial G(uq, ..., us)
homogeneous of degree 6 in this space is Calabi-Yau

o For instance, terms in G may be u$, ujus, ui, usuz




CYs in Toric Varieties

Toric Varieties

One further generalization

o Now introduce more identifications in R?. For instance let
(x,y,z) € R* —{"0"}. Then define two relations:

(z,y,2) ~p+ (r1z, 73y, 2)  and (z,vy, 2) ~p» (z, r2y, r22)

(17 17 1) — (Tla T%T% T2)




CYs in Toric Varieties

Toric Varieties

Same story for the complex case

@ Introduce more identifications in C". For instance let
(u1,...,ug) € C® —{0}. Then define two relations:

(21, ..., ug) ~Cx (clul, ctus, Pus, uy, Cus, CU'UEG) and

(1, ..., ug) ~Cx (coul, Ao, coug, clu4, clu,.;, clu@)

@ Here now every coordinate u1 has not one degree but two. wu
for instance has multidegree (;) while u5 has multidegree (f)

@ Such a space is called a toric variety. Using the notation
above, you may write it as:

cP,
1 1 2 2 2 0
0 0 0 1 1 1




CYs in Toric Varieties

Toric Varieties

Calabi-Yau hypersurface in toric varieties

@ Due to the size of the matrix of degrees one often does not
write the CIP in front of it an simply specifies the space X by:

11 2 2 2 0
X =
0 0 0 1 1 1
@ Now the Calabi-Yau condition on the degrees of a

homogeneous polynomial G applies to every single line of
the matrix above. This means that the variety

V= {(uy,...,ug) € X such that G(uy, us, uz, ug, us,ug) = 0}

is Calabi-Yau iff ¢ is a polynomial of multidegree (2)
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Summary

Summary

What have we learnt?

@ Many scenarios need Calabi-Yaus for compactification 10 dim
— 4 dim

@ We can construct Calabi-Yaus in complex projective spaces
CP"

@ Complex projective spaces — weighted projective spaces by
changing the equivalence relations of points in C" — new
degrees to for coordinates.

@ Tloric varieties arise by introducing more equivalence relation
a— multidegrees for coordinates

@ Calabi-Yau spaces can be obtained as the zero set of a
homogeneous polynomial in a (wheighted) projective
space/toric variety that has the same (multi)degree as the sum
of (multi)degrees of all coordinates = Calabi-Yau condition

o




Thank you!



