Toric Geometry in String Theory

(DIY Calabi-Yau Tool Kit)

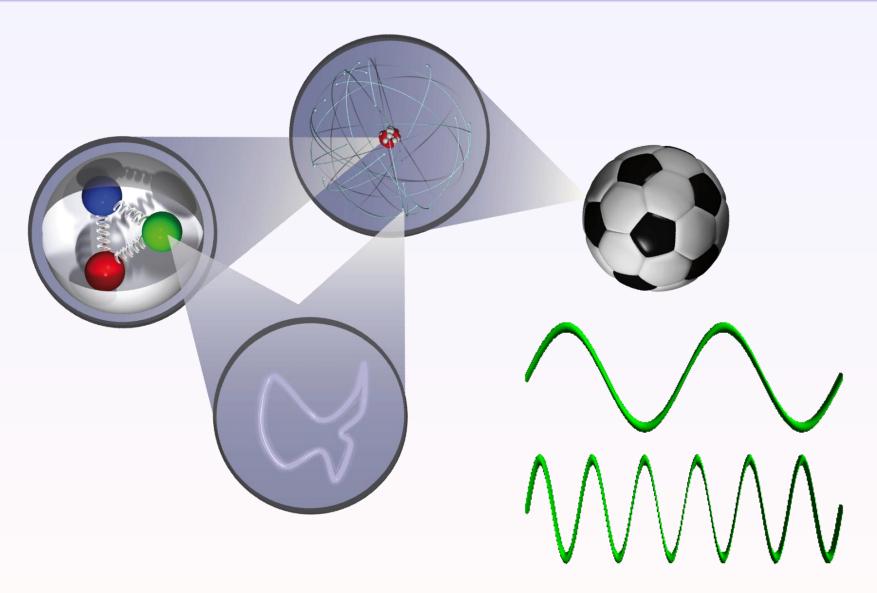
Thorsten Rahn

Munich — February 11th, 2011

Table of contents

- Calabi-Yau Spaces in String Theory
- 2 Projective Spaces
- Calabi-Yaus in Projective Spaces
- Calabi-Yaus in Toric Varieties
- Summary

Unification of Particles and Forces with Strings

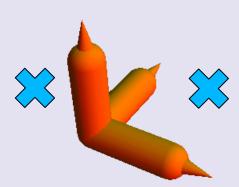


Consistency of Superstrings

Projective Spaces

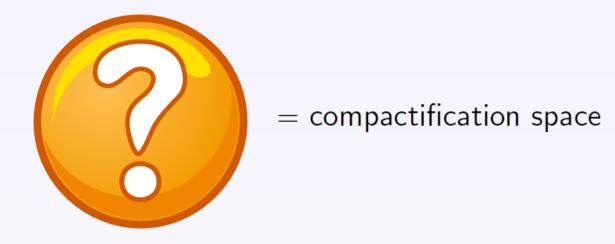
Prediction of dimension

- Superstring theories are theories with world sheet (hence space) time) super symmetry
- In Order to maintain consistency of the superstring, D=10 is required



• Choose for example $X = \mathbb{R}^{1,3} \times M_6$

Shape of Extra Dimensions



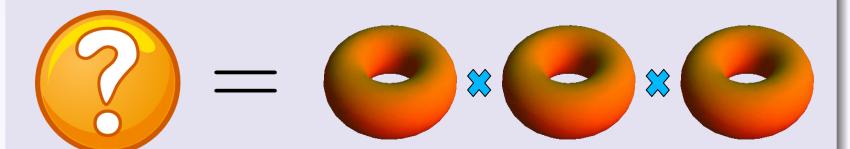
How does the compactification space look like?

- The heterotic super string has $\mathcal{N}=1$ in 10 dimensions
- Depending on the compactification space some of them survive some don't
- ullet For a realistic model we want $\mathcal{N}=1$ in 4 dimensions
- Thus only $\frac{1}{4}$ of the original super symmetry survives

How to Determine the right Compactification Space?

Two examples

Toroidal compactification

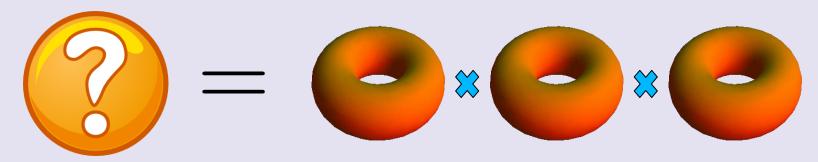


Summary

How to Determine the right Compactification Space?

Two examples

Toroidal compactification



 $\Rightarrow \mathcal{N} = 4$ in 4 dimensions

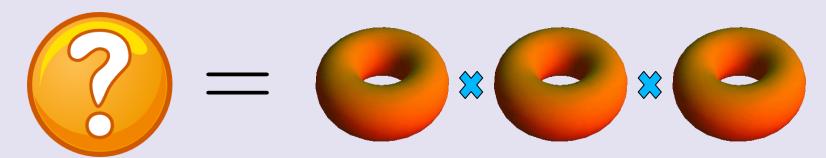
Calabi-Yau compactification

Summary

How to Determine the right Compactification Space?

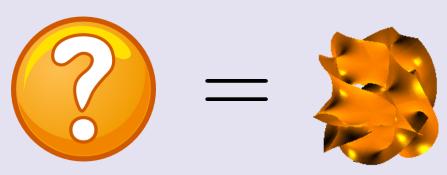
Two examples

Toroidal compactification



 $\Rightarrow \mathcal{N} = 4$ in 4 dimensions

Calabi-Yau compactification

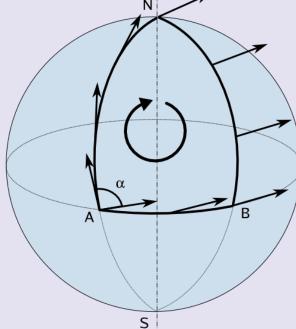


 $\Rightarrow \mathcal{N} = 1$ in 4 dimensions

What is a Calabi-Yau?

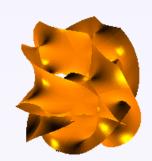
Holonomy

 The holonomy group of a space the group transformations that can be performed on a tangent vector via parallel transport



- ullet For the 2-sphere the holonomy group is simpy $S\mathcal{O}(2,\mathbb{R})$
- A space M is called Calabi-Yau if its holonomy group is SU(n), n = dim M.

Calabi-Yau it is



- \bullet In fact the SU(3) holonomy is necessary to break the correct amount of SUSY in this context
- Hence we need a way to construct Calabi-Yau Manifolds in string theory
- How?

Projective Spaces

- Calabi-Yau Spaces in String Theory
- 2 Projective Spaces
- Calabi-Yaus in Projective Spaces
- Calabi-Yaus in Toric Varieties
- 5 Summary

What is a projective space?

The real projective space \mathbb{RP}^n

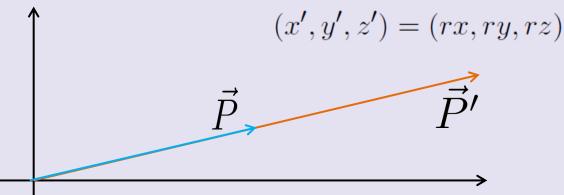
- ullet \mathbb{RP}^n is the space consisting of all straight lines in \mathbb{R}^{n+1} through the origin
- Consider for instance \mathbb{RP}^2 : It is given by the unit sphere where antipodal points are

identified

Definition of \mathbb{RP}^n

Points on a line are identified

- ullet As mentioned, elements of the projective space \mathbb{RP}^2 are straight lines through the origin of \mathbb{R}^3
- Therefore a point $P=(x,y,z)\in\mathbb{R}^3$ is identified with a point $P'=(x',y',z')\in\mathbb{R}^3$ iff \exists a constant $r\in\mathbb{R}^*=\mathbb{R}-\{0\}$, such that



- We say then $(x',y',z')\sim_{\mathbb{R}^*} (x,y,z)$. Notice: The point (0,0,0) is NOT an element of \mathbb{RP}^2
- Hence $\mathbb{RP}^2 = \frac{\mathbb{R}^3}{\sim_{\mathbb{R}^*}}$

From \mathbb{C}^2 to \mathbb{CP}^2

The same story applies to complex spaces

Projective Spaces

- Define \mathbb{CP}^2 as the space of all straight lines through the origin
- This time a point $u=(u_1,u_2,u_3)\in\mathbb{C}^3$ is identified with a point $u' = (u'_1, u'_2, u'_3)$ iff there is a constant $c \in \mathbb{C}^* = \mathbb{C} - \{0\}$, such that

$$(u'_1, u'_2, u'_3) = (c \ u_1, c \ u_2, c \ u_3)$$

 Notice: Since we deal with complex spaces, the exponent, denoting the complex dimension is twice the real dimension, e.g. $\dim(\mathbb{C}^3) = 6$ and $\dim(\mathbb{CP}^2) = 4$. Again as before, e.g. $\mathbb{CP}^2 = \frac{\mathbb{C}^3}{24\pi^2}$

Calabi-Yaus in Projective Spaces

- Calabi-Yau Spaces in String Theory
- 2 Projective Spaces
- Calabi-Yaus in Projective Spaces
- Calabi-Yaus in Toric Varieties
- 5 Summary

Algebraic varieties in \mathbb{R}^3

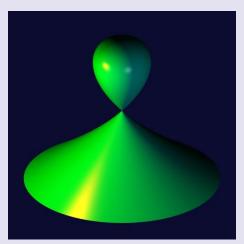
What is an algebraic variety V of \mathbb{R}^3 ?

Projective Spaces

- ullet V in \mathbb{R}^3 is the zero set of a function $f:\mathbb{R}^3\longrightarrow\mathbb{R}$
- Formally $V := \{(x, y, z) \in \mathbb{R}^3 \text{ such that } f(x, y, z) = 0\}$
- Unless $f \equiv 0$, $\dim(V) = \dim(\mathbb{R}^3) 1 = 2$.
- Choose for instance $f(x, y, z) = x^2y^2 + y^2z^2 + x^2z^2 + 100$ $(x^2 + y^2 + z^2 - 1)^3$

$$-x^2z^3 - \frac{9}{80}y^2z^3$$

$$x^2 + y^2 - z^2 + z^3$$



Algebraic varieties in \mathbb{CP}^4

One can of course also define an algebraic variety in \mathbb{CP}^4 (lack of imagination)

Projective Spaces

• $\mathbb{CP}^4 = \frac{\mathbb{C}^5}{\sim_{\mathbb{C}^*}}$, hence an algebraic variety Q inside \mathbb{CP}^4 can be defined by function $G: \mathbb{CP}^4 \longrightarrow \mathbb{C}$:

$$Q := \{(u_1, u_2, u_3, u_4, u_5) \in \mathbb{CP}^4 : G(u_1, u_2, u_3, u_4, u_5) = 0\}$$

• One can prove that a variety in \mathbb{CP}^4 is Calabi-Yau, iff it is a polynomial, homogeneous of degree 5:

$$Q(u_1, u_2, u_3, u_4, u_5) := c_1 u_1^5 + c_2 u_1^4 u_2 + c_3 u_1^3 u_2^2 + \dots + u_1 u_2 u_3 u_4 u_5 + \dots + c_{124} u_4^2 u_5^3 + c_{125} u_4^1 u_5^4 + c_{126} u_5^5$$

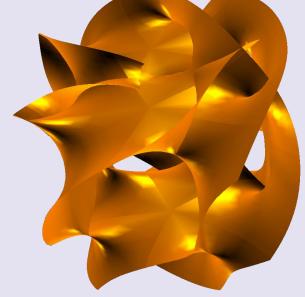
For arbitrary coefficients $c_1, ..., c_{126} \in \mathbb{C}$.

The Quintic and the (n+1)-tic

• The variety Q, since it is a degree 5 polynomial is also referred to as "'the Quintic" in \mathbb{CP}^4 and denoted as $Q =: \mathbb{CP}^4[5]$ in order to indicate the degree of the homogeneous polynomial.

Taking a certain two dimensional section of the Quintic, we

obtain the following plot:



 In general it holds: A homogeneous polynomial of degree n+1 in \mathbb{CP}^n , namely $\mathbb{CP}^n[n+1]$ is always Calabi-Yau

Calabi-Yaus in Toric Varieties

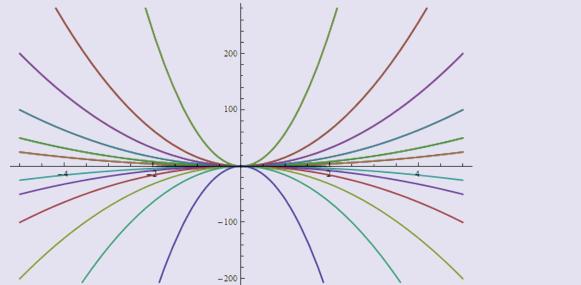
- Calabi-Yau Spaces in String Theory
- 2 Projective Spaces
- Calabi-Yaus in Projective Spaces
- Calabi-Yaus in Toric Varieties
- 5 Summary

Weighted Projective Spaces

Curves instead of straight lines in \mathbb{RP}^1

- ullet We introduced \mathbb{RP}^1 to be the set of straight lines through the origin, e.g. $(1,1) \sim_{\mathbb{R}^*} (r,r)$.
- This can be generalized in a straight forward way. For instance **identify parabola** of \mathbb{R}^2 , namely

 $(x,y) \sim_{\mathbb{R}^*} (rx,r^2y)$ for example: $(1,1) \sim_{\mathbb{R}^*} (r,r^2)$



Weighted Projective Spaces

Curves instead of straight lines in \mathbb{RP}^1

Projective Spaces

$$(x,y) \sim_{\mathbb{R}^*} (rx,r^2y)$$
 for example: $(1,1) \sim_{\mathbb{R}^*} (r,r^2)$

- Such a space we call a weighted projective space, where the **weights** are defined by the powers of r
- Our example here has weights 1 and 2 and is denoted by $\mathbb{RP}_{1,2}$
- Hence a projective space can then be written as

$$\mathbb{RP}^n = \mathbb{RP}_{\underbrace{1,1,...,1}_{(n+1)-\text{times}}}$$

Weighted Projective Spaces

Projective Spaces

The complex case:

- The same thing can be done to define a complex weighted projective space.
- For instance choose $\mathbb{CP}_{1,1,1,1,2}$. It is again $\mathbb{C}^5 \{0\}$ where points are identified via:

$$\{(u_1, u_2, u_3, u_4, u_5) \sim_{\mathbb{C}^*} (c^1 u_1, c^1 u_2, c^1 u_3, c^1 u_4, c^2 u_5)\}, c \neq 0$$

- We now say that $u_1, ..., u_4$ have degree 1 and u_5 has degree 2
- Using this definition of the degree of a polynomial in $(u_1,...,u_5)$ one can show that **every polynomial** $G(u_1,...,u_5)$ homogeneous of degree 6 in this space is Calabi-Yau
- For instance, terms in G may be u_1^6 , $u_1^5u_3$, u_5^3 , $u_2^2u_5^2$

Toric Varieties

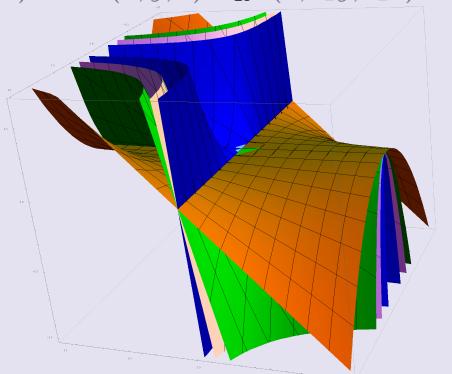
One further generalization

Projective Spaces

• Now introduce more identifications in \mathbb{R}^3 . For instance let $(x,y,z)\in\mathbb{R}^3-\{\text{"0"}\}$. Then define two relations:

$$(x, y, z) \sim_{\mathbb{R}^*} (r_1 x, r_1^2 y, z)$$
 and $(x, y, z) \sim_{\mathbb{R}^*} (x, r_2 y, r_2 z)$

$$(1,1,1) = (r_1, r_1^2 r_2, r_2)$$



Toric Varieties

Same story for the complex case

Projective Spaces

• Introduce more identifications in \mathbb{C}^n . For instance let $(u_1,...,u_6) \in \mathbb{C}^6 - \{0\}$. Then define two relations:

$$(u_1, ..., u_6) \sim_{\mathbb{C}^*} (c^1u_1, c^1u_2, c^2u_3, c^2u_4, c^2u_5, c^0u_6)$$
 and $(u_1, ..., u_6) \sim_{\mathbb{C}^*} (c^0u_1, c^0u_2, c^0u_3, c^1u_4, c^1u_5, c^1u_6)$

- Here now every coordinate u_1 has not one degree but two. u_1 for instance has **multidegree** $\binom{1}{0}$ while u_5 has multidegree $\binom{2}{1}$
- Such a space is called a toric variety. Using the notation above, you may write it as:

$$\mathbb{CP} \begin{pmatrix}
1 & 1 & 2 & 2 & 2 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{pmatrix}$$

Toric Varieties

Calabi-Yau hypersurface in toric varieties

Projective Spaces

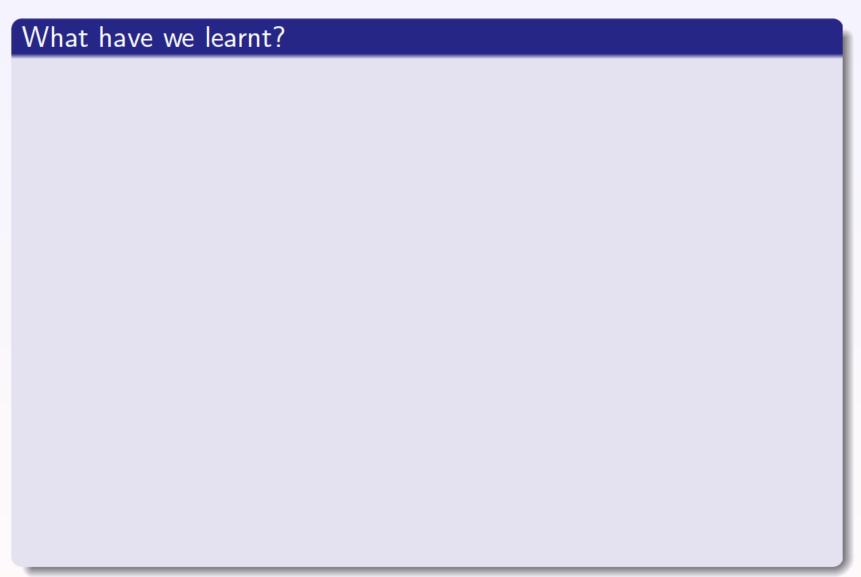
 Due to the size of the matrix of degrees one often does not write the \mathbb{CP} in front of it an simply specifies the space X by:

$$X = \begin{pmatrix} 1 & 1 & 2 & 2 & 2 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{pmatrix}$$

 Now the Calabi-Yau condition on the degrees of a homogeneous polynomial G applies to every single line of the matrix above. This means that the variety

$$V := \{(u_1, ..., u_6) \in X \text{ such that } G(u_1, u_2, u_3, u_4, u_5, u_6) = 0\}$$

is Calabi-Yau iff G is a polynomial of multidegree $\binom{8}{3}$



- Many scenarios need Calabi-Yaus for compactification 10 dim
 - \rightarrow 4 dim

- Many scenarios need Calabi-Yaus for compactification 10 dim
 \rightarrow 4 dim
- ullet We can construct Calabi-Yaus in complex projective spaces \mathbb{CP}^n

- Many scenarios need Calabi-Yaus for compactification 10 dim
 \rightarrow 4 dim
- ullet We can construct Calabi-Yaus in complex projective spaces \mathbb{CP}^n
- Complex projective spaces \to weighted projective spaces by changing the equivalence relations of points in $\mathbb{C}^n \to$ new degrees to for coordinates.

- Many scenarios need Calabi-Yaus for compactification 10 dim
 \rightarrow 4 dim
- We can construct Calabi-Yaus in complex projective spaces \mathbb{CP}^n
- Complex projective spaces \to weighted projective spaces by changing the equivalence relations of points in $\mathbb{C}^n \to$ new degrees to for coordinates.
- Toric varieties arise by introducing more equivalence relation $a \rightarrow$ multidegrees for coordinates

- Many scenarios need Calabi-Yaus for compactification 10 dim
 \rightarrow 4 dim
- We can construct Calabi-Yaus in complex projective spaces \mathbb{CP}^n
- Complex projective spaces \to weighted projective spaces by changing the equivalence relations of points in $\mathbb{C}^n \to$ new degrees to for coordinates.
- Toric varieties arise by introducing more equivalence relation
 a→ multidegrees for coordinates
- Calabi-Yau spaces can be obtained as the zero set of a homogeneous polynomial in a (wheighted) projective space/toric variety that has the same (multi)degree as the sum of (multi)degrees of all coordinates ⇒ Calabi-Yau condition

Thank you!