## Flavour and the MSSME<sup>1</sup>

#### **Tillmann Heidsieck**

Technical University of Munich (TUM)

Munich, March 11th 2011

<sup>&</sup>lt;sup>1</sup>Most Simple Standard Model Extension

#### 1 Introduction

- 2 Rare B and K decays, CP Violation
- 3 Lepton Flavour Violation



A. Buras, B. Duling, T. Feldmann, T.H., C. Promberger, S. Recksiegel 1002.2126 1004.4565 (Without S.R) 1006.5356

## Why a fourth Generation?

## Why a fourth Generation?

Why not?

### The SM4 highlights

- ${\ }$   ${\ }$  Consider a fourth, sequential generation of quarks (t',b')
- The CKM matrix has to be generalised to a four generation model, thereby the model is described by a set of 10 parameters

$$\theta_{12}\,,\;\theta_{13}\,,\;\theta_{14}\,,\;\theta_{23}\,,\;\theta_{24}\,,\;\theta_{34}\,,\;\delta_{13}\,,\;\delta_{14}\,,\;\delta_{24}\,,\;m_{t'}$$

- The operator structure does not change
- Currently there are the following (rough) bounds on the new parameters

$$s_{14} \le 0.04$$
,  $s_{24} \le 0.17$ ,  $s_{34} \le 0.27$ ,  
 $300 \text{GeV} \le m_{t'} \le \text{Min} \left( \frac{600 \text{GeV}}{M_W} / |s_{34}| \right)$ 

Chanowitz et. al. Phys. Rev. D 79 (2009) 113008

#### More sophisticated bounds on the mixing angles

EBERHARD ET AL. (2010)

#### Take into account all contributions to the S and T parameters



• Strong correlation between  $s_{14}$  and  $s_{24}$  from FCNC constraints • Correlation between  $s_{34}$  and  $m_{t'}$  from EWPT

|                           | BS1 (yellow)            | BS2 (green)                   | BS3 (red)             |
|---------------------------|-------------------------|-------------------------------|-----------------------|
| $S_{\psi\phi}$            | $0.04 \pm 0.01$         | $0.04\pm0.01$                 | $\geq 0.4$            |
| $Br(B_s \to \mu^+ \mu^-)$ | $(2\pm0.2)\cdot10^{-9}$ | $(3.2 \pm 0.2) \cdot 10^{-9}$ | $\geq 6\cdot 10^{-9}$ |
|                           |                         |                               |                       |

light blue stands for  $Br(K_L \to \pi^0 \nu \bar{\nu}) > 2 \cdot 10^{-10}$ dark blue stands for  $Br(K_L \to \pi^0 \nu \bar{\nu}) \le 2 \cdot 10^{-10}$ 

A first look at rare B decays,  $Br(B_q \to \mu^+ \mu^-)$ 



- Big enhancements in  $Br(B_q \rightarrow \mu^+ \mu^-)$  possible but not simultaneously
- non-CMFV nature of the SM4 clearly seen in this correlation
- Maximal deviations possible if one of  $Br(B_q \to \mu^+ \mu^-)$  is SM3 like

 $Br(B_q \to \mu^+ \mu^-)$  vs.  $S_{\psi\phi}$ 

$$\varphi_{B_s}^{\rm tot} = -(0.39^{+0.18}_{-0.14}) \ \left[-(1.18^{+0.14}_{-0.18})\right]$$

(HFAG)

• Enhancement of  $S_{\psi\phi} > 0.5$  implies enhancement of  $\operatorname{Br}(B_s \to \mu^+ \mu^-)$  together with  $\operatorname{Br}(B_d \to \mu^+ \mu^-) \sim (1-2) \cdot 10^{-10}$ 

• For small  $S_{\psi\phi}$  a suppression of  $Br(B_s \to \mu^+ \mu^-)$  is also possible

 $B \to X_s \gamma$  and  $B \to X_s \ell^+ \ell^-$ 



- Br $(B \rightarrow X_s \gamma)$  was calculated at LO for  $\mu_{\text{eff}} = 3.22 \text{GeV}$  to have the LO formula mimic the NNLO result
- Br(B → X<sub>s</sub>ℓ<sup>+</sup>ℓ<sup>-</sup>) was calculated at NLO and rescaled to mimic the corresponding (partial) NNLO result

The correlation is not as strong as for other observables, but the measurement of  $Br(B_s \rightarrow \mu^+ \mu^-)$  would highly constrain the allowed area.

Br  $(K_L \to \pi^0 \nu \bar{\nu})$  vs. Br  $(K^+ \to \pi^+ \nu \bar{\nu})$ 



- Enhancement by orders of magnitude possible!
- Only mild correlation with the *B* system
- For big enhancements of Br  $(K_L \to \pi^0 \nu \bar{\nu})$ , Br  $(K^+ \to \pi^+ \nu \bar{\nu})$  is enhanced too, but the reverse is not true
- The lower branch is tightly constrained through Br  $(K_L \rightarrow \mu^+ \mu^-)_{\rm SD}$

Br 
$$(K^+ \to \pi^+ \nu \bar{\nu})_{\text{exp.}} = (17.3^{+11.5}_{-10.5}) \cdot 10^{-11}$$

E949 Collab., Phys. Rev. Lett. 101 (2008) 191802

## arepsilon'/arepsilon and $S_{\psi\phi}$ ... there is a connection after all

- $\varepsilon'/\varepsilon$  very well measured
- Theoretically demanding due to the importance of non-pert. corrections.



- In general the SM4 can satisfy  $\varepsilon'/\varepsilon$  for any set of hadronic parameters
- For  $S_{\psi\phi}>0.4$  we need special values of R6 and R8 in order to reproduce the data

Taking  $\varepsilon'/\varepsilon$  as a constraint: Preliminaries

What happens if we take  $\varepsilon'/\varepsilon$  as a constraint?

Procedure:

- Turn the argument around and assume one of our scenarios for R6, R8 to be correct.
- Take a very conservative error for  $\varepsilon'/\varepsilon$  and use  $\varepsilon'/\varepsilon$  as a constraint.
- Colour code:

| $R_6$ | $R_8$ |           |
|-------|-------|-----------|
| 1.0   | 1.0   | dark blue |
| 1.5   | 0.8   | purple    |
| 2.0   | 1.0   | green     |
| 1.5   | 0.5   | orange    |

### $\varepsilon'/\varepsilon$ as a constraint

- For  $S_{\psi\phi} > 0$  the t and t' contributions (Z penguins) are both negative and cancel out the QCD penguins
- ${\bullet}~B8 < 1$  lessens the influence of the Z penguin, while B6 > 1 strengthens the QCD penguins



- $\varepsilon'/\varepsilon$  constrains  $S_{\psi\phi}$  asymmetrical
- For  $\varepsilon'/\varepsilon$  to agree with the data concurrently with  $S_{\psi\phi}\gg 0$ , we need R6>1,~R8<1 and  $R6/R8\sim 3$ .

 $\varepsilon'/\varepsilon$  as a constraint II

- As anticipated  $\varepsilon'/\varepsilon$  poses a constraint on  $K\to\pi\nu\nu$  , but much milder than usual
- Close to the GN bound spectacular enhancements of  ${\rm Br}(K_L \to \pi \nu \bar{\nu})$  are still possible



- ${\rm \circ}\,$  Reminder: Operator structure not changed, but CKM elements might differ their SM values, esp.  $V_{ts}$  and  $V_{td}$
- ${\rm \bullet}~{\rm Im}\lambda_t^{(K)}$  can be enhanced, which helps to circumvent bounds from  $\varepsilon'/\varepsilon$

# CP Violation in $D^0 - \bar{D}^0 (\eta_f S_f^D \text{ vs. } a_{SL}^D)$



- Big deviations from the SM3 prediction (close to zero for both) are possible
- three-way correlation between  $\eta_f S_f^D$ ,  $a_{\rm SL}^D$  and  ${
  m Br}(K_L o \pi^0 \nu \bar{\nu})$

arepsilon'/arepsilon and  $S_{\psi\phi}$  or how to kill CP-violation in  $D^0-ar{D}^0$ 



- With  $\varepsilon'/\varepsilon$  as a constraint, from left to right the possible CPV vanishes
- $\varepsilon'/\varepsilon$  clearly diminishes CPV in the  $D^0$  system, even without a constraint coming from  $S_{\psi\phi}$
- Imposing different  $S_{\psi\phi}$  constraints further shrinks the possible CPV in the  $D^0$  system, however it is still by orders of magnitude above the SM prediction.

## LFV mixing & constraints



Lacker & Menzel '10

- Lepton universality:  $|U_{e4}| \sim |U_{\mu4}|$
- Radiative decays:  $|U_{e4}U_{\mu4}^*|$  small

- Lepton universality (shaded areas) provides a stringent bound on the matrix elements  $U_{e4}$  and  $U_{\mu4}$
- The radiative decays provide an orthogonal set of constraints
- Future experiments on  $\mu \to e \gamma$  and  $X \mu \to X e$  can push both matrix elements below 1%



- Both decays are  $|U_{ au 4}^* U_{\mu 4}|$ and  $m_{
  u_4}$  dependent
- The additional CKM dependence of  $\mu\pi$  turns out to be small

Strong correlation, saturates current bounds.

• If was measured the other would have to be around the same order of magnitude



- Mild correlation between  $\tau\to\mu\gamma$  and  $\tau\to e\gamma$  through  $\mu\to e\gamma$  and lepton universality
- Future and current bounds are saturated

#### Messages and Conclusions

The SM4 provides a set of interesting features

- Both  $Br(B_s \to \mu^+ \mu^-)$  and  $Br(B_d \to \mu^+ \mu^-)$  can be increased/decreased compared to the SM3 but not simultaneously
- For  $S_{\psi\phi} \gg 0$  an enhancement of  $Br(B_s \to \mu^+ \mu^-)$  is needed
- A suppression of  $Br(B_s \to \mu^+ \mu^-)$  is possible for  $S_{\psi\phi}$  SM3 like
- In  $Br(K_L \to \pi^0 \nu \bar{\nu})$  and  $Br(K^+ \to \pi^+ \nu \bar{\nu})$  there is, independently of the *B* system, still much room for big enhancements
- $\varepsilon'/\varepsilon$  could become a very important constraint, if R6 and R8 were known to moderate accuracy
- CP violation in the  $D^0 \bar{D}^0$  system can be drastically diminished through the interplay of  $\varepsilon'/\varepsilon$  and  $S_{\psi\phi}$
- LFV with a fourth generation is highly predictive due to the very small number of parameters

Thank you for your attention!

Backup



- From no correlation to a strong correlation (for  $S_{\psi\phi}>0)$
- For  $S_{\psi\phi} \gg 0$  no big enhancements of  ${\rm Br}(K_L \to \pi \nu \bar{\nu})$

 $B \to X_s \nu \bar{\nu}$  and  $B_s \to \mu^+ \mu^-$ 



•  $B \to X_s \nu \bar{\nu}$  and  $B_s \to \mu^+ \mu^-$  are strongly correlated • A similar correlation between  $B \to X_s \nu \bar{\nu}$  and  $B \to X_s \ell^+ \ell^-$  exists Semileptonic asymmetry  $a_{SL}^{(s)}$  in  $B_s$ 



CP violation in  $b \rightarrow s\gamma$ 



#### Time-dependent CP Asymmetries Preliminaries

$$A_{f} = A_{f}^{c} \left( 1 + a_{f}^{u} e^{i\gamma} + \sum_{i} \left( b_{fi}^{c} + b_{fi}^{u} e^{i\gamma} \right) C_{i}^{\mathrm{NP}} \left( M_{W} \right) \right)$$

G. BUCHALLA, G. HILLER, Y. NIR, G. RAZ, JHEP 09 (2005) 074

$$|A_f|e^{i\varphi_f} \approx A_f^c \left(1 + r_f \frac{\lambda_{t'}^{(s)}}{\lambda_t^{(s)}}\right)$$

- $b_{fi}^c$ ,  $b_{fi}^u$  from non-pert. QCD
- ratio  $a_f^u$  of SM amplitudes

 $r_{\phi K_S} = -0.248 Y_0(x_{t'}) + 0.004 X_0(x_{t'}) + 0.075 Z_0(x_{t'}) - 0.7 E'_0(x_{t'})$ 

$$S_f = -\eta_f \sin\left[2\left(\varphi_{B_d}^{\text{tot}} + \varphi_f\right)\right]$$

 $S_{fK_S}$  as a function of  $S_{\psi\phi}$ 

The SM4 provides the 'right' correlation to accommodate the most recent measurements for  $S_{fK_S}$  and  $S_{\psi\phi}$ 



- LO approximation of the hadronic parameters involved, no strong phase.
- Enhancement of  $S_{\psi\phi}$  is always accompanied by a suppression of both  $S_{\phi K_S}$  and  $S_{\eta' K_S}$ .
- A more detailed analysis of the involved hadronic parameters would be desirable.

Constraining  $Br(K \to \pi \nu \bar{\nu})$  through  $Br(K_L \to \mu^+ \mu^-)_{SD}$ 

$$T_Y \equiv \operatorname{Br}(K_L \to \mu^+ \mu^-)_{SD}$$
$$T_X \equiv \operatorname{Br}(K^+ \to \pi^+ \nu \bar{\nu}) - \frac{\kappa_+}{\kappa_L} \operatorname{Br}(K_L \to \pi^0 \nu \bar{\nu})$$



T<sub>Y</sub> and T<sub>X</sub> are strongly correlated
 Br(K<sub>L</sub> → π<sup>0</sup>νν̄) does not get directly constrained

Br  $(K_L \to \mu^+ \mu^-)_{SD} < 2.5 \cdot 10^{-9}$  G. Isidori et. al. JHEP 01 (2004) 009

#### Full formulae

$$S_{i} = S_{0}(x_{t}) + \frac{\eta_{t't'}^{(i)}}{\eta_{tt}^{(i)}} \left(\frac{\lambda_{t'}^{(i)}}{\lambda_{t}^{(i)}}\right)^{2} S_{0}(x_{t'}) + 2\frac{\eta_{tt'}^{(i)}}{\eta_{tt}^{(i)}} \left(\frac{\lambda_{t'}^{(i)}}{\lambda_{t}^{(i)}}\right) S_{0}(x_{t}, x_{t'}) + 2\frac{\eta_{ct'}^{(i)}}{\eta_{tt}^{(i)}} \left(\frac{\lambda_{c}^{(i)} \lambda_{t'}^{(i)}}{\lambda_{t}^{(i)2}}\right) S_{0}(x_{t'}, x_{c})$$

$$T_{Y} \equiv \operatorname{Br}(K_{L} \to \mu^{+}\mu^{-})_{\mathrm{SD}} = 2.08 \cdot 10^{-9} \left( \frac{\operatorname{Re}\lambda_{c}^{(K)}}{|V_{us}|} P_{c}(Y_{K}) + \frac{\operatorname{Re}(\lambda_{t}^{(K)}Y_{K})}{|V_{us}|^{5}} \right)^{2} \\ \operatorname{Br}(K^{+} \to \pi^{+}\nu\bar{\nu}) = \kappa_{+} \left[ \left( \frac{\operatorname{Im}(\lambda_{t}^{(K)}X_{K}^{\ell})}{|V_{us}|^{5}} \right)^{2} + \left( \frac{\operatorname{Re}\lambda_{c}^{(K)}}{|V_{us}|} P_{c}^{\ell}(X) + \frac{\operatorname{Re}(\lambda_{t}^{(K)}X_{K}^{\ell})}{|V_{us}|^{5}} \right)^{2} \right] \\ T_{X} = \operatorname{red} \operatorname{part}$$

