Axions in Cosmology

Peter Graf in collaboration with Frank Daniel Steffen

Max-Planck-Institut für Physik München

based on Phys. Rev. D 83 (2011)

15.04.2011

Table of Contents

1 Introduction

2 Thermal Axions

- Thermal Relics vs. Thermally Produced Axions
- Gauge-invariant Regularization

3 Nonthermal Axions

The Hadronic Axion

• Axion coupling:

$$\mathcal{L}_a = a \frac{\alpha_s}{8\pi} \frac{1}{f_{\rm PQ}} G^{b\ \mu\nu} \widetilde{G}^b_{\mu\nu}$$

- Idea: Construct a model such that interaction imply the counterterm
- A complex scalar field ϕ and an exotic heavy quark with mass $M_Q = h\langle \phi \rangle = h f_{\rm PQ}/\sqrt{2}$
- Coupling to gluons give effective term in the Lagrangian

The Potential

- Mexican hat
- Hat gets tilted by instanton effects at $T \approx \Lambda_{\rm QCD}$: axion acquires a mass
- Lowest point is the CP conserving value: $\langle a \rangle = -\bar{\theta} f_{PQ}$

Introduction Thermal Axions onthermal Axions

Conclusions

Axion Properties

• Coupling:

$$\mathcal{L}_a = a \frac{\alpha_s}{8\pi} \frac{1}{f_{\rm PQ}} G^{b\ \mu\nu} \widetilde{G}^b_{\mu\nu}$$

• Axion mass:

$$m_a \simeq 0.60 \ \mathrm{meV} \left(\frac{10^{10} \ \mathrm{GeV}}{f_{\mathrm{PQ}}} \right)$$

• All limits imply

$$f_{\rm PQ} \gtrsim 6 \times 10^8 {\rm ~GeV}$$

 $m_a \lesssim 10 \text{ meV}$

[Raffelt,'06]

Cosmological Setting

Peter Graf Axions in Cosmology

Thermal Relics vs. Thermally Produced Axions Gauge-invariant Regularization

Axions in the Primordial Hot Hadronic Gas

[Hannestad, Mirizzi, Raffelt, '05]

• $T_{\rm R} > T_{\rm D}$: Axions were in thermal equilibrium for $T > T_{\rm D}$

$$\pi + \pi \leftrightarrow \pi + a \quad \text{and} \quad N + \pi \leftrightarrow N + a$$

- Freeze out if interaction rate becomes too slow compared to expansion rate of the Universe: $\Gamma_a \approx H$ at $T \approx T_D$
- $T_{\rm R} < T_{\rm D}$: Axions are thermally produced via

$$\pi + \pi \to \pi + a$$
 and $N + \pi \to N + a$

Thermal Relics vs. Thermally Produced Axions Gauge-invariant Regularization

Thermal Axion Production in the Quark Gluon Plasma

Thermal Relics vs. Thermally Produced Axions Gauge-invariant Regularization

Results for Squared Matrix Elements

Label i	Process i	$ M_i ^2 / \left(rac{lpha_s^3}{f_{ m PQ}^2}rac{1}{\pi} ight)$
A	$g^a + g^b \to g^c + a$	$-2\frac{(s^2+st+t^2)^2}{st(s+t)} f^{abc} ^2$
В	$q_i + \bar{q}_j \to g^a + a$	$\frac{1}{2}\left(\frac{2t^2}{s}+2t+s\right) T^a_{ij} ^2$
С	$q_i + g^a \to q_j + a$	$\frac{1}{2}\left(-\frac{2s^2}{t}-2s-t\right) T_{ij}^a ^2$

depending on $s = (P_1 + P_2)^2$ and $t = (P_1 - P_3)^2$

IR divergences

Processes A and C: logarithmic IR divergence

Regularization using QCD Debye mass done by $[Masso,Rota,Zsembinszki,'02] \leftarrow gauge-dependent$

Thermal Relics vs. Thermally Produced Axions Gauge-invariant Regularization

HTL Resummation and Braaten-Yuan ['91] Prescription

introduce $g_s T \ll k_{\text{cut}} \ll T$ with $g_s \ll 1$

$$\begin{split} \frac{dW_a}{d^3p} \bigg|_{\text{hard}} &= \frac{1}{2(2\pi)^3 E} \int \frac{d\Omega_p}{4\pi} \int \left[\prod_{j=1}^3 \frac{d^3p_i}{(2\pi)^3 2E_i} \right] \\ &\times (2\pi)^4 \delta^4 (P_1 + P_2 - P_3 - P) \\ &\times \{f_1(E_1) f_2(E_2) [1 \pm f_3(E_3)] \\ &\times [1 + f_a(E)] |M_{1+2 \rightarrow 3+a}|^2 \}_{k > k_{\text{cut}}} \\ &\frac{dW_a}{d^3p} \bigg|_{\text{hard}} = A_{\text{hard}} + B \log \left(\frac{T}{k_{\text{cut}}} \right) \end{split}$$

Thermal Relics vs. Thermally Produced Axions Gauge-invariant Regularization

HTL Resummation and Braaten-Yuan ['91] Prescription

introduce $g_s T \ll k_{\text{cut}} \ll T$ with $g_s \ll 1$

Result is independent of k_{cut} : $\frac{dW_a}{d^3p} = \frac{dW_a}{d^3p}\Big|_{\text{hard}} + \frac{dW_a}{d^3p}\Big|_{\text{soft}}$

10 / 16

Thermal Relics vs. Thermally Produced Axions Gauge-invariant Regularization

Thermal Axion Number Density

$$\frac{dn_a}{dt} + 3Hn_a = C_a$$

$$C_a = \int d^3 p \left[\frac{dW_a}{d^3 p} \right] = \frac{\alpha_s^3}{f_{\rm PQ}^2} T^6 \zeta(3) \frac{1}{\pi^4} \left\{ \ln \left[\frac{T^2}{(m_g^{\rm th})^2} \right] + 0.406 \right\}$$

with the thermal gluon mass

$$(m_g^{\rm th})^2 = \frac{g_s^2 T^2}{9} \left(N + \frac{n_f}{2} \right)$$

for $\mathrm{SU}(N)$ color group and n_f quark flavors

Thermal Relics vs. Thermally Produced Axions Gauge-invariant Regularization

Axion Yield

$$Y_a(T_0) = \frac{n_a(T_0)}{s} \simeq 18.6 \times g_s^6 \ln\left(\frac{1.501}{g_s}\right) \left(\frac{10^{10} \text{ GeV}}{f_{\rm PQ}}\right)^2 \left(\frac{T_{\rm R}}{10^{10} \text{ GeV}}\right)$$

- Note: Production only!
- Therefore: Yield of thermally produced axions
- Max: equilibrium yield

 $Y_a^{\rm eq} \approx 2.6 \times 10^{-3}$

• Kink: decoupling temperature

12/16

Misalignment Production

- At $T \approx \Lambda_{\text{QCD}}$: Axion mass switches on
- Axion field performs coherent oscillations around CP conserving minimum
- Condensate of cold axions forms
- Possible candidate for Dark Matter

Resulting energy density depends on cosmological setting

Misalignment Production

- $T_{\rm R} > f_{\rm PQ}$: PQ-symmetry restored after inflation and broken subsequently
- Universe consists if many patches with different $\bar{\theta}_i$
- average value relevant: $\langle \bar{\theta}_i^2 \rangle = \pi^2/3$

$$\Omega_a h^2 \approx 0.6 \left(\frac{f_{\rm PQ}}{10^{12}~{\rm GeV}}\right)^{7/6}$$

- $T_{\rm R} < f_{\rm PQ}$: PQ-symmetry broken before or during inflation and not restored afterwards
- one value of $\bar{\theta}_i$ for the whole observable Universe
- energy density dominated by a random variable

$$\Omega_a h^2 \approx 0.15 f(\bar{\theta}_i^2) \bar{\theta}_i^2 \left(\frac{f_{\rm PQ}}{10^{12}~{\rm GeV}}\right)^{7/6} \label{eq:GeV}$$

Axion Energy Density

Conclusions

- Axions are a very light and weakly interacting particle species
- They are produced via scattering processes and can reach thermal equilibrium in the early Universe
- Thermal field theory allows for a gauge-invariant treatment of axion production
- Nonthermal axions can provide the dark matter