Performances of the muon identification at the ATLAS experiment

M. Vanadia

Max-Planck-Institut für Physik

April 15, 2011- IMPRS

Using muons in analyses

Motivation

- Muons fundamental for most analyses
- \bullet In ATLAS need to identify muons up to 1 TeV with $\approx 10\%$ resolution
- Alignment: crucial task for momentum resolution
- Performance studies needed both to improve quality of measurements and to give fundamental inputs to analysis groups

Performance work

- Reconstruction efficiency determination
- Trigger Efficiency determination
- Misidentification rate measurement
- Momentum resolution determination

The ATLAS detector

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Subdetectors

- Inner Detector (solenoidal field)
 - Silicon tracker up to $|\eta| < 2.5$
- Calorimeters
 - \bullet EM up to $|\eta| < 3.2$
 - Liquid Argon sampling calorimeter
 - Hadronic up to $|\eta| < 4.9$
 - Tile sampling calorimeter
 - Liquid Argon Calorimeter (forward)
- Muon Spectrometer (toroidal field)
 - Tracking up to $|\eta| < 2.7$
 - $\begin{array}{c} \bullet \ \, {\rm Trigger} \ {\rm up} \ {\rm to} \\ |\eta| < 2.4 \end{array}$

Muon identification with the ATLAS detector

Standalone

- Use Muon Spectrometer only
- Maximal acceptance

Segment tagged

- Inner Detector track tagged using Muon Spectrometer
- Increase efficiency in poorly instrumented regions

Combined

- Use Inner Detector + Muon Spectrometer
- Best momentum resolution

Efficiency measurement: the Tag and Probe method

To measure muon reconstruction efficiency, dimuons decay of Z, J/ψ are used. The total reconstruction efficiency can be factorized as $\epsilon^{reco} = \epsilon^{MS} \epsilon^{comb} \epsilon^{ID}$ Its measurement is performed in two steps, using the Tag and Probe method:

- One combined muon: TAG
- One track on the other side of the detector: PROBE
- \rightarrow Search for a reconstructed muon track associated to the probe: MATCH

$$\epsilon = \frac{N_{Probes}^{Matched}}{N_{Probes}}$$

measure of $\epsilon^{MS}\epsilon^{comb}$

- Inner Detector track as probe
- Combined track as match

- Muon Spectrometer track as probe
- Inner Detector track as match

An example, with Inner Detector tracks used as probe and combined tracks as matching tracks

Selection for $Z \longrightarrow \mu\mu$ Tag&Probe

First step: measure $\epsilon^{MS}\epsilon^{comb}$ using Inner Detector tracks as probe:

- Vertex with 3+ tracks (to avoid cosmic background)
- TAG Combined muon
 - $p_T > 20 \text{ GeV}$, $|\eta| < 2.4$
 - Muon fired trigger (to avoid biased efficiency) Isolation cut: $\frac{\sum p_T^{\Delta R < 0.4}}{p_T^{\mu}} < 0.2$
- PROBE Inner Detector track
 - From same vertex as tag
 - Opposite charge
 - $p_T > 20 \; GeV$, $|\eta| < 2.5$
 - Isolation cut: $\frac{\sum p_T^{\Delta}R < 0.4}{p_T^{D}Dtrk} < 0.2$
 - Invariant mass: $|m_{\mu\mu} m_Z| < 10 \ GeV$
 - Azimuthal separation of tag and probe tracks, $|\Delta \phi| > 2$
- MATCH Combined Track associated to Probe
 - $\Delta R < 0.1$ between probe track and reconstructed muon

Rejection power on background

Results on Pythia samples

Samples	
Sample	Contribute
$Z \longrightarrow \mu\mu$	99.62%
$W \longrightarrow \mu\nu$	0.21%
$b\overline{b}$	0.059%
$t \bar{t}$	0.042%
$W \longrightarrow \tau \nu$	0.029%
$Z \longrightarrow \tau \tau$	0.025%
$c\overline{c}$	0.021%

- High purity sample of $Z \longrightarrow \mu\mu$ is selected
- ullet Small background contribution, most of it at low p_T
- Good data-MC simulation agreement

Results on Pythia samples

Samples	
Sample	Contribute
$Z \longrightarrow \mu\mu$	99.62%
$W \longrightarrow \mu\nu$	0.21%
$b\overline{b}$	0.059%
$t \overline{t}$	0.042%
$W \longrightarrow \tau \nu$	0.029%
$Z \longrightarrow \tau \tau$	0.025%
$c\overline{c}$	0.021%

- High purity sample of $Z \longrightarrow \mu\mu$ is selected
- \circ Small background contribution, most of it at low p_T
- Good data-MC simulation agreement

Efficiency vs η

- Data/MC ratio (Scale Factor, SF) flat and compatible with 1
- $|\eta| \approx 0$ Acceptance gap to allow space for services
- o $|\eta| \approx 1.1$ Region with not enough chambers to provide momentum measurement in the Muon Spectrometer
- Inefficiency in those regions can be recovered with different reconstruction strategies

Improvements adding Tagged Muons

Efficiency recovery with Segment Tagged muons

- Adding Segment Tagged (ST) muons to Combined (CB) muons allow for a recovery of the efficiency in the poorly instrumented regions
- Full recovery around $|\eta| \approx 1.1$
- Partial recovery around $|\eta| \approx 0$
- CB+ST muons are the ones that will be used in physics analysis on 2010 and 2011 data

Efficiency with different muon tightness definition

Both plots show Combined + Segment Tagged muons.

Tighter definition of muons

- High efficiency in the whole detector
- Very good agreement with MC

Looser definition of muons

- Very high efficiency in the whole detector
- Perfect agreement with MC
- \bullet Efficiency flat in the whole detector (apart from acceptance gap at $\eta\approx0)$

Efficiency at low p_T

- \bullet To study efficiency at low p_T , $J/\Psi \longrightarrow \mu \mu$ is used
- Allow for a measurement of the efficiency turn on curve
- \circ Adding Segment Tagged muons to the Combined rises the efficiency especially for very low p_T muons

Final step: the ID efficiency

Inner Detector efficiency

- Average efficiency, $99.1\% \pm 0.1\%$
- Data/MC ratio compatible with 1 within less than 1%

The results of the efficiency study

- The reconstruction efficiency was measured on 2010 data showing $\epsilon^{reco}=(97.2\pm0.2)\%$
- Data and MC simulations are in very good agreement for the reconstruction efficiency, in good agreement for trigger efficiency
- ullet The outcome of this sutdies were MC/data ratio Scale Factors (binned in η and p_T) to correct the MC simulation reconstrucion to what is expected from the data measurements

Spotting the problems: energy loss and magnetic field

As an example of a performance study, here I will present a very simple study, performed during the early data taking period, that helped finding and understanding a problem that was then solved.

• Deflection angle α of a muon with momentum p and electric charge q after a path \mathcal{P} :

$$\alpha = \frac{q}{p} \int_{\mathcal{P}} B_{\perp} \, dl$$

 B_{\perp} : magnetic field component orthogonal to $\mathcal{P}.$

- Misalignment of the tracking detector leads to a constant mismeasurement $\delta \alpha$ of α
- ⇒ The measured momentum systematically deviates from the right momentum p by

$$-\frac{1}{q\int\limits_{\mathcal{P}}B_{\perp}\,dl}\delta\alpha\cdot p^2=:-K\cdot p^2.$$

$$\underline{q > 0}$$
: $p_{meas.} = p - K_{+} \cdot p^{2}$.
 $\underline{q < 0}$: $p_{meas.} = p - K_{-} \cdot p^{2} = p + K_{+} \cdot p^{2}$.

The method

The equations

$$\begin{array}{l} \underline{q>0} \colon \ p_{meas.} = p - K_+ \cdot p^2. \\ \underline{q<0} \colon \ p_{meas.} = p - K_- \cdot p^2 = p + K_+ \cdot p^2. \\ \hline \bullet \ p^{MS} = p + E_{loss} \ (E_{loss} \colon \text{energy loss in the calorimeters}). \end{array}$$

$$< p_{+}^{MS} - p_{+}^{ID}> = E_{loss} + (K_{+}^{ID} - K_{+}^{MS}) \cdot p^{2}$$

$$< p_{-}^{MS} - p_{-}^{ID}> = E_{loss} - (K_{+}^{ID} - K_{+}^{MS}) \cdot p^{2}$$
 Solve the system to find E_{loss} , ΔK

The method: Produce a measurement of $< p_{\pm}^{ID} - p_{\pm}^{MS} >$ in different regions of the detector to identify eventual problematic regions

- The fit:
- Fit a normal distribution to the peak of the Δp distribution in $[\mu 2\sigma, \mu + 1.5\sigma]$.
- Take the mean of the fitted Gaussian as the value for $< p_{\pm}^{ID} p_{\pm}^{MS} >$ to be unaffected by tails of the distribution.

Measured energy loss corrections

- Measured energy loss proportional to path length in calorimeter material.
- Central region: $E_{loss} \sim 3$ GeV.
- Calorimeter transition region: $E_{loss} \sim 5$ GeV.
- \bullet Forward region: $E_{loss} \sim 3.5$ GeV.

Comparison of measured and expected energy losses

- Dots display mean of $E_{loss}^{meas.} E_{loss}^{expt.}$.
- Error bars display RMS of $E_{loss}^{meas.}$ $E_{loss}^{expt.}$.

Barrel

 $\quad \circ \ E_{loss}^{meas.} - E_{loss}^{expt.} < 0.1 \ {\rm GeV}.$

Spectrometer transition region

 $\quad \circ \ E_{loss}^{meas.} - E_{loss}^{expt.} \sim 1 \ {\rm GeV}.$

What is the origin of this problem?

- Wrong Muon Spectrometer momentum measurement due to wrong magnetic field map?
- Wrong material distribution used for energy loss calculation?

Interpretation of energy loss corrections

 $E_{loss}^{meas.} - E_{loss}^{expt.} \sim 1$ GeV in the muon spectrometer transition region

 $E_{loss}^{meas.} - E_{loss}^{expt.}$ as a function of the muon energy

- \Rightarrow Energy dependence of the deviation of the measured from the predicted energy loss may be related to a unprecise $\int B \, dl$ in the transition region:
 - $\int B\,dl$ too large by $(5.4\pm0.3)\%$ for $\eta\in[-1.6,-1.2]$,
 - $\int B\,dl$ too large by $(2.6\pm0.2)\%$ for $\eta\in[1.2,1.6]$?

2D map of $p^{ID}-p^{MS}/p^{ID}$ with the new magnetic field map. Plot by P. Kluit.

Conclusions

- In the first part of the talk, shown part of a complete study on the performances of the muon identification at the ATLAS experiment
- In the second part, shown a simple exercise that led to spot a problem that was then fixed
- The message: one crucial task when you work with a detector is understanding the detector itself

BACKUP

Other applications of the Tag and Probe method: the trigger efficiency

Using as a probe a Combined Track to match to a triggerd muon, it is possible to maesure the trigger efficiency for the muons. The trigger efficiency was measured as well to be $\approx 80\%$ in the central region, $\approx 95\%$ in the forward region

Interpretation of alignment corrections

- Results restricted to the MS barrel towers($|\eta| < 0.97$).
- ${\rm \circ \ No}$ sector independent offset of ΔK_+ from 0.
- ⇒ No indication of a clocking effect in the ID alignment.

- Alignment of the muon spectrometer sectors seems to be on the same level.
- Large sectors show a smaller spread of the corrections.

Evaluation of corrections with $Z \to \mu^+ \mu^-$ events

- Hypothesis 1: $K_+^{ID}=0 \to {\rm Stand}$ -alone mass resolution $\frac{\sigma m_{\mu\mu}}{m_{\mu\mu}}$ improves from $(4.1\pm0.6)\%$ to $(3.6\pm0.5)\%$ by applying alignment corrections.
- Hypothesis 2: $K_+^{MS}=0 \to \text{Inner detector mass resolution } \frac{\sigma m_{\mu\mu}}{m_{\mu}\mu}$ is unchanged at $(3.4\pm0.6)\%$ after applying alignment corrections.
- ightarrow ΔK_{+} at tower level dominated by muon spectrometer misalignment.