$W^{\mp}H^{\pm}$ production and CP asymmetry at the LHC

DAO Thi Nhung

Based on

Wolfgang Hollik, Le Duc Ninh, D.T.N, Phys.Rev.D38:075003

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

IMPRS colloquium 13th May 2011

Outline

- Overview
 - Theoretical framework
 - Charged Higgs searches at colliders
- $pp \rightarrow H^{\pm}W^{\mp}$
 - The lowest order
 - The effective bottom-Higgs couplings
 - \blacksquare Neutral Higgs propagator resummation
 - NLO corrections to $b\bar{b} \to H^{\pm}W^{\mp}$
 - Numerical results
- 3 Conclusions

Where charged Higgs bosons come from?

- What is the mechanism to generate particle masses? The Higgs mechanism is confirmed when Higgs bosons are found.
- No theoretical and experimental constraint on the number of Higgs bosons

SM: one Higgs doublets
$$\begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \stackrel{EWSB}{\longrightarrow} h^0$$

■ Two-Higgs-Doublet-Model (2HDM) is the simplest extension of the SM

$$\begin{pmatrix} H_1^0 \\ H_1^- \end{pmatrix} \text{ and } \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix} \stackrel{EWSB}{\longrightarrow} h^0, H^0 \text{ (CP even), } A^0 \text{ (CP odd), } \textcolor{red}{H^\pm}$$

- lacktriangle Type I: fermions couple to one doublet \rightarrow No FCNC at tree-level
- Type II: down-type fermions couple to H_1 , up-type fermions to H_2 (required by the MSSM) \rightarrow No FCNC at tree-level
- Type III: fermions couple to both H_1 and H_2

 $H^{\pm} \rightarrow \text{clear signal of physics beyond the SM}$

The Minimal Supersymmetry Standard Model (MSSM) Higgs sector

compare to 2HDM type II:

- Two Higgs doublets with opposite hypercharge are required (analytic superpotential, anomaly free)
- Quartic coupling in Higgs potential is fixed

$$V = m_1^2 H_{ui}^* H_{ui} + m_2^2 H_{di}^* H_{di} + \epsilon^{ij} (m_{12}^2 H_{ui} H_{dj} + \text{H.c})$$
$$+ \frac{g_1^2 + g_2^2}{8} (H_{ui}^* H_{ui} - H_{di}^* H_{di})^2 + \frac{g_2^2}{2} |H_{ui}^* H_{di}|^2$$

- Predict a light neutral Higgs boson: $m_{h^0} < 140 \text{ GeV}$
- Number of Higgs-sector parameters are reduced

$$M_{H^\pm}(M_{A^0}), aneta = rac{v_2}{v_1}$$

other good points of the MSSM: solve hierarchy problem, unification, dark matter candidate, \dots

 e^-e^+ colliders (LEP, future ILC,...)

■ Two main production processes

- subsequence decays:
 - $\blacksquare M_{H^{\pm}} < m_t m_b : H^- \to \tau \bar{\nu}_{\tau}, H^- \to \bar{c}s$
 - $M_{H^{\pm}} > m_t + m_b : H^- \to \bar{t}b, H^- \to h^0/AW$

 e^-e^+ colliders (LEP, future ILC,...)

■ Two main production processes

- subsequence decays:
 - $M_{H^{\pm}} < m_t m_b: H^- \to \tau \bar{\nu}_{\tau}, H^- \to \bar{c}s$
 - $M_{H^{\pm}} > m_t + m_b : H^- \to \bar{t}b, H^- \to h^0/AW$

LEP (192-209 GeV) analysis based on process 1):

- $M_{H^{\pm}} \ge 78.6$ GeV at 95% C.L for general 2HDM
- within MSSM, $M_{H^\pm}^2=M_A^2+M_W^2,\ M_A\geq 93.4\ {\rm GeV}$ $\to M_{H^\pm}\geq 120\ {\rm GeV}$

Hadron colliders (Tevatron, LHC)

- Production processes
 - $pp \rightarrow H^-t$ [Plehn, Shou, M. Beccaria, Elber, Dittmaier] largest production rate
 - $pp \to H^{\pm}W^{\mp}$ [Kniehl, O. Brein, Hollik, Gao, Rauch, Yang]
 - $pp \to H^-H^+$ [Eichten, Plehn, Hollik, Kniehl]

Hadron colliders (Tevatron, LHC)

- Production processes
 - pp → H⁻t [Plehn, Shou, M. Beccaria, Elber, Dittmaier] largest production rate
 - $pp \to H^{\pm}W^{\mp}$ [Kniehl, O. Brein, Hollik, Gao, Rauch, Yang]
 - $pp \to H^-H^+$ [Eichten, Plehn, Hollik, Kniehl]

CDF analysis based on:

- $gg \to t\bar{t} \to (H^+\bar{b})\bar{t}$
- $\blacksquare M_{H^{\pm}} < m_t m_b$
- \blacksquare important coupling Htb

Phys.Rev.Lett.96:042003

 M_{SUSY} =1000 GeV/c ², μ =500 GeV/c ², A_1 =500 GeV/c ², A_2 =500 GeV/c ² M_1 =0.498*M ₂, M_2 = M_3 = M_0 = M_1 = M_0 = M_2 = M_1 = M_0 = M_1 =

$pp \to H^{\pm}W^{\mp}$: What has been done?

Many studies are done in the real MSSM

- $gg \to H^{\pm}W^{\mp}$: loop induced
 [Barrientos Bendezu and Kniehl; Brein, Hollik and Kanemura]
- $b\bar{b} \to H^{\pm}W^{\mp}$: calculated at NLO
 - SM-QCD corrections [Hollik and Zhu; Gao, C.S. Li and Z. Li]
 - SUSY-QCD corrections [Zhao, C.S. Li and Z. Li; Rauch]
 - Yukawa corrections [Yang, C.S. Li, Jin and Zhu]
 - Full EW corrections: missing

$pp \to H^{\pm}W^{\mp}$: What has been done?

Many studies are done in the real MSSM

- $gg \to H^{\pm}W^{\mp}$: loop induced
 [Barrientos Bendezu and Kniehl; Brein, Hollik and Kanemura]
- $b\bar{b} \to H^{\pm}W^{\mp}$: calculated at NLO
 - SM-QCD corrections [Hollik and Zhu; Gao, C.S. Li and Z. Li]
 - SUSY-QCD corrections [Zhao, C.S. Li and Z. Li; Rauch]
 - Yukawa corrections [Yang, C.S. Li, Jin and Zhu]
 - Full EW corrections: missing

Our work:

- compute in general complex MSSM
- full EW corrections to $b\bar{b} \to H^{\pm}W^{\mp}$, consistently combine with QCD corrections,
- CP violating effects
- use the effective bottom-Higgs couplings
- use the neutral Higgs propagator resummation

The lowest order: $b\bar{b} \to H^{\pm}W^{\mp}$, $gg \to H^{\pm}W^{\mp}$

 $lackbox{b} b ar{b}
ightarrow H^{\pm}W^{\mp}$

Importances

■ bottom-Higgs couplings: $\lambda_{b\bar{b}h/H/A} \propto \frac{m_b}{\cos\beta}$, $\lambda_{b\bar{t}H^+} \propto (\frac{m_t}{\tan\beta}P_L + m_b\tan\beta P_R)$

• neutral Higgs propagator: $\frac{i}{p^2-m_{h^2}}$, m_h^2 ?

■ Leading contribution $\alpha_s^n \ln^n(m_b/\mu_R)$ from SM-QCD are resumed into running $m_b^{\overline{\rm DR}}(\mu_R)$

- \rightarrow SM-QCD corrections do not depend on $\ln m_b$
- → ensure convergent property of perturbative expansion

■ Leading contribution $\alpha_s^n \ln^n(m_b/\mu_R)$ from SM-QCD are resumed into running $m_b^{\overline{\rm DR}}(\mu_R)$

- \rightarrow SM-QCD corrections do not depend on $\ln m_b$
- → ensure convergent property of perturbative expansion
- Leading contribution $\Delta m_b \propto \tan \beta$ from SUSY corrections are resumed into bottom-Higgs couplings $\lambda_{bbh} \propto \frac{m_b}{1+\Delta m_b}$

■ Leading contribution $\alpha_s^n \ln^n(m_b/\mu_R)$ from SM-QCD are resumed into running $m_b^{\overline{\rm DR}}(\mu_R)$

- \rightarrow SM-QCD corrections do not depend on $\ln m_b$
- → ensure convergent property of perturbative expansion
- Leading contribution $\Delta m_b \propto \tan \beta$ from SUSY corrections are resumed into bottom-Higgs couplings $\lambda_{bbh} \propto \frac{m_b}{1+\Delta m_b}$

$$\Delta m_b^{SQCD} = \frac{2\alpha_s}{3\pi} M_3^* \mu^* \tan \beta I(M_{\tilde{b}_1}^2, M_{\tilde{b}_2}^2, M_{\tilde{g}}^2)$$

$$I(a, b, c) = -\frac{ab \ln \frac{a}{b} + bc \ln \frac{b}{c} + ca \ln \frac{c}{a}}{(a-b)(b-c)(c-a)}$$

- \bullet Δm_b in general is complex
- if Δm_b close to -1, λ can be very large

■ Leading contribution $\alpha_s^n \ln^n(m_b/\mu_R)$ from SM-QCD are resumed into running $m_b^{\overline{\rm DR}}(\mu_R)$

- \rightarrow SM-QCD corrections do not depend on $\ln m_b$
- \rightarrow ensure convergent property of perturbative expansion
- Leading contribution $\Delta m_b \propto \tan \beta$ from SUSY corrections are resumed into bottom-Higgs couplings $\lambda_{bbh} \propto \frac{m_b}{1+\Delta m_b}$

$$\Delta m_b^{SQCD} = \frac{2\alpha_s}{3\pi} M_3^* \mu^* \tan \beta I(M_{\tilde{b}_1}^2, M_{\tilde{b}_2}^2, M_{\tilde{g}}^2)$$

$$I(a, b, c) = -\frac{ab \ln \frac{a}{b} + bc \ln \frac{b}{c} + ca \ln \frac{c}{a}}{(a-b)(b-c)(c-a)}$$

- \blacksquare Δm_b in general is complex
- if Δm_b close to -1, λ can be very large
- To avoid double counting, we have to subtract the Δm_b -related corrections in one-loop calculation

Δm_b resummation effects

- $\delta = (\sigma_{\rm IBA} \sigma_{\rm LO})/\sigma_{\rm LO}$
- 50% at $\tan \beta = 20$
- even 150% at $\phi_3 = \pm \pi$

Neutral Higgs propagator resummation

$$\mathcal{A}(p^2) = \sum_{ij} \Gamma_i \, \Delta_{ij}(p^2) \, \Gamma_j, \quad i = h, H, A,$$

 $\Gamma_{i,j}$ are one-particle irreducible Higgs vertices.

$$\begin{split} &\Delta(p^2) &= i[p^2 - \mathcal{M}(p^2)]^{-1}, \\ &\mathcal{M}(p^2) &= \begin{pmatrix} m_h^2 - \hat{\Sigma}_{hh}(p^2) & -\hat{\Sigma}_{hH}(p^2) & -\hat{\Sigma}_{hA}(p^2) \\ -\hat{\Sigma}_{hH}(p^2) & m_H^2 - \hat{\Sigma}_{HH}(p^2) & -\hat{\Sigma}_{HA}(p^2) \\ -\hat{\Sigma}_{hA}(p^2) & -\hat{\Sigma}_{HA}(p^2) & m_A^2 - \hat{\Sigma}_{AA}(p^2) \end{pmatrix}. \end{split}$$

- \mathbf{m}_i (i = h, H, A) are the lowest-order Higgs-boson masses
- $\hat{\Sigma}_{ij}$ the renormalized self-energies, $\hat{\Sigma}_{h/HA}$ vanish in real MSSM,
- Loop-corrected masses are obtained by diagonalizing $\mathcal{M}(p^2)$

Neutral Higgs propagator resummation

$$\mathcal{A}(p^2) = \sum_{ij} \Gamma_i \, \Delta_{ij}(p^2) \, \Gamma_j, \quad i = h, H, A,$$

 $\Gamma_{i,j}$ are one-particle irreducible Higgs vertices.

$$\begin{split} &\Delta(p^2) &= i[p^2 - \mathcal{M}(p^2)]^{-1}, \\ &\mathcal{M}(p^2) &= \begin{pmatrix} m_h^2 - \hat{\Sigma}_{hh}(p^2) & -\hat{\Sigma}_{hH}(p^2) & -\hat{\Sigma}_{hA}(p^2) \\ -\hat{\Sigma}_{hH}(p^2) & m_H^2 - \hat{\Sigma}_{HH}(p^2) & -\hat{\Sigma}_{HA}(p^2) \\ -\hat{\Sigma}_{hA}(p^2) & -\hat{\Sigma}_{HA}(p^2) & m_A^2 - \hat{\Sigma}_{AA}(p^2) \end{pmatrix}. \end{split}$$

- \mathbf{m}_i (i = h, H, A) are the lowest-order Higgs-boson masses
- $\hat{\Sigma}_{ij}$ the renormalized self-energies, $\hat{\Sigma}_{h/HA}$ vanish in real MSSM,
- Loop-corrected masses are obtained by diagonalizing $\mathcal{M}(p^2)$
- To avoid double counting, we have to discard all $h_i h_j$ self-energies diagrams in NLO EW corrections

Higgs mixing resummation effects

- less than 10% in subprocesses $b\bar{b} \to W^{\mp}H^{\pm}$
- large effects (30% at $\phi_t = \pm \pi$) in subprocesses $gg \to W^{\mp}H^{\pm}$

NLO corrections to $b\bar{b} \to H^{\pm}W^{\mp}$

Virtual contributions:

■ SM-QCD

■ SUSY-QCD

 \blacksquare EW part consists of 352 self-energies + 440 triangles + 153 boxes

Real contributions:

Gluon induce, photon induce:

NLO corrections to $b\bar{b} \to H^{\pm}W^{\mp}$

Divergencies:

- UV divergencies are cured by renormalization,
 - OS-scheme for W-boson, M_{H^+} , m_t
 - DR-scheme for tan β , m_b , H^{\pm} wave function
- IR divergencies are cancelled between the virtual part and the gluon and photon radiations
- Mass singularities of the type $\alpha_s \ln(m_b)$ and $\alpha \ln(m_b)$ are absorbed into (anti-) bottom PDF
- In the gluon- and photon-induced precesses, the top quark can be on-shell then $t \to Wb$ ($t \to Hb$). This contribution belongs to tH (tW) production so it needs to be subtracted in a gauge-invariant way.

Hadronic cross section and CP asymmetry

Drell-Yan process

$$\sigma^{pp} = \sum_{i,}$$
PDF: M

$$\sigma^{pp} = \sum_{i,j} \int dx_1 dx_2 [F_i^p(x_1, \mu_F) F_j^p(x_2, \mu_F) \hat{\sigma}^{ij}(\mu_R) + i \leftrightarrow j)],$$

PDF: MRST2004qed

CP asymmetry

$$\delta_{pp}^{\text{CP violation}} \quad = \quad \frac{\sigma(pp \to W^-H^+) - \sigma(pp \to W^+H^-)}{\sigma(pp \to W^-H^+) + \sigma(pp \to W^+H^-)}.$$

Use CPX scenario for numerical studies

NLO corrections to $b\bar{b} \to H^{\pm}W^{\mp}$

Total hardronic cross section

CP asymmetry

Scale dependence

$$\delta = [|\sigma(\mu_{F0}/2) - \sigma(\mu_{F0})| + |\sigma(2\mu_{F0}) - \sigma(\mu_{F0})|]/\sigma(\mu_{F0})$$

$$\blacksquare \mu_R = \mu_F, \, \mu_{F0} = M_W + M_{H^{\pm}}$$

- NLO: $\delta = 9\%(9\%)$
- IBA: $\delta = 14\%(7\%)$

- 14 TeV $\delta = 24\%$
- 7 TeV: $\delta = 34\%$

Conclusions

- $pp \to W^{\mp}H^{\pm}$ have been studied in general complex MSSM
- \blacksquare NLO EW, QCD corrections to $b\bar{b} \to W \mp H^\pm$ are important for precision searches
- NLO corrections significantly reduce scale dependence
- Large CP asymmetry is mainly induced from gg fusion
- \blacksquare The effective bottom-Higgs couplings have significant effects on $b\bar{b}$ annihilation
- The Higgs mixing resummation gives large effects on gg fusion, and CP asymmetry
- Production rates and CP asymmetry strongly depend on $\tan \beta$, $M_{H^{\pm}}$, ϕ_t , ϕ_3

Conclusions

- $pp \to W^{\mp}H^{\pm}$ have been studied in general complex MSSM
- NLO EW, QCD corrections to $b\bar{b} \to W \mp H^{\pm}$ are important for precision searches
- NLO corrections significantly reduce scale dependence
- Large CP asymmetry is mainly induced from gg fusion
- \blacksquare The effective bottom-Higgs couplings have significant effects on $b\bar{b}$ annihilation
- The Higgs mixing resummation gives large effects on gg fusion, and CP asymmetry
- Production rates and CP asymmetry strongly depend on $\tan \beta$, $M_{H^{\pm}}$, ϕ_t , ϕ_3

THANK YOU FOR YOUR ATTENTION