Search for the neutral MSSM Higgs Boson Decay $h/A/H \rightarrow \mu^+\mu^-$ in 7 TeV pp Collisions at the ATLAS Experiment

Sebastian Stern

supervised by Sandra Kortner

Max-Planck-Institut für Physik München

IMPRS EPP Colloquium May 13th 2011

LHC: Design vs. Status

	Design Operation Parameters		
HO ATLAS	Circumference C.M. energy Peak luminosity Bunches per beam Bunch crossing rate Integrated luminosity	$\begin{array}{l} 27 \text{ km} \\ 14 \text{ TeV} \\ 10^{34} \text{ cm}^{-2}\text{s}^{-1} \\ \sim 2800 \\ 40 \text{ MHz} \\ \sim 100 \text{ fb}^{-1}/\text{year} \end{array}$	
	Current Status		
	C.M. energy Bunches per beam Colliding bunches Peak luminosity Integrated luminosity	7 TeV 768 \sim 700 $8 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$ 266 pb ⁻¹	

Upcoming steps in LHC operation:

Short-term: Collect $\sim 5 \text{ fb}^{-1}$ by the end of 2012. Long-term: 15 months shutdown before increase of C.M. energy to 14 TeV.

ATLAS: Overview

2010 Run Summary

LHC Delivered All	49 pb ⁻¹
ATLAS Recorded	45 pb ⁻¹
Live Fraction	0.92

2011 Run Summary

LHC Delivered All	266 pb ⁻¹
ATLAS Recorded	253 pb ⁻¹
Live Fraction	0.95

Expected integrated luminosity recorded by the end of this year: $\sim 2 \ {\rm fb}^{-1}$

Total integrated online luminosity 2011

After rediscovering the Standard Model in 2010 data ATLAS will become sensitive to various New Physics processes this year.

- In ATLAS most Higgs searches beyond the SM assume the MSSM.
- Several MSSM benchmark scenarios are studied, selecting interesting regions in the parameter space.
- $\bullet~$ Most early data MSSM Higgs analyses assume the maximal mixing scenario m_{h}^{max} :

Parameter		Value $[GeV]$
Sfermion mass	M_{SUSY}	1000
Stop mixing	X_t	2000
Higgs mass	μ	-200
Gaugino mass	M_2	200
Gluino mass	$M_{\tilde{g}}$	800

 $\bullet\,$ As all sfermion masses are set to $M_{\tilde{f}} > M_H$ only decays into SM particles are considered.

The MSSM Higgs Sector

- * Two Higgs doublets, resulting in five physical Higgs bosons: h/A/H and H^{\pm} .
- * At tree level the Higgs sector is fully determined by two free parameters: m_A and $\tan \beta = \frac{v_1}{v_2}$.
- * In m_h^{max} the lightest neutral Higgs boson is limited to $m_h \lesssim 130$ GeV.
- * Two or three Higgs Bosons are degenerated in mass especially for high $\tan\beta$:
 - $m_h \approx m_A$ for $m_A < 130$ GeV
 - $m_H \approx m_A$ for $m_A > 130$ GeV
 - $m_h \approx m_A \approx m_H$ for $m_A \approx 130$ GeV

 \Rightarrow Measured signal has contributions from two or three resonances.

Constraints on MSSM Higgs Boson Parameters

Theoretical constraint:

* Requiring Higgs couplings to fermions remain small enough for perturbative calculations: $\tan\beta\lesssim 60.$

Experimental limits:

LEP	$m_{h/H} > 114$ GeV, $\tan \beta \gtrsim 5$	
Tevatron*	$m_A > 95$ GeV, $\tan \beta \lesssim 35$	* evaluated in $A ightarrow au^{+} au^{-}$ channel
ATLAS*	$\tan\beta \lesssim 30$ for $M_A = [110, 150]$ GeV	

Neutral MSSM Higgs Bosons at the LHC

Relevant Decay Channels:

- * $h/A/H \rightarrow b\bar{b}$: Largest branching fraction (~ 90%); large QCD background.
- * $h/A/H \rightarrow \tau^+ \tau^-$: Branching fraction ~ 10%; neutrino contribution in final state.
- * $h/A/H \rightarrow \mu^+\mu^-$: Low branching fraction (0.04%); very clean signature; highest mass resolution \rightarrow crucial for Higgs mass measurement.

Characterisic signature of the $h/A/H \rightarrow \mu^+\mu^-$ Decay:

- Two high p_T muons (depending on M_A),
- having opposite charge and
- isolated tracks.

Signal signature in associated b-jet production:

- $h/A/H
 ightarrow \mu^+\mu^-$ decay signature as above,
- additionally one or two low- p_T b-jets.

Background Processes

- SM process having same signature as signal process:
 - $Z \rightarrow \mu^+ \mu^-$ produced in Drell-Yan or associated jet production.
 - $t\bar{t} \rightarrow \mu\nu b + \mu\nu b$.
 - $Z \rightarrow \tau^+ \tau^-$ with leptonic $\tau \rightarrow \mu$ decays.
 - misidentified final states from or diboson or QCD dijet events.
- Dominant processes: Z and $t\bar{t}$ (exceed signal by $\approx 4-5$ orders of magnitude).

LHC+ATLAS MSSM Higgs Bosons $A \rightarrow \mu^+ \mu^-$ Conclusions

Preselection

- Event is in GoodRunsList (requiring ATLAS detector fully operational).
- Event passed high- p_T single muon trigger EF_mu20 .
- At least one primary vertex with at least 5 tracks.
- Trigger muon has $p_T > 20$ GeV.
- Muon pair formed of highest p_T leptons with opposite charge and $p_T > 20$ GeV.
- Cosmic/Pileup rejection: $z_0 < 10$, $d_0/d_0^{error} < 10$ (associated ID track).
- $M_{\mu^+\mu^-} > 70$ GeV.

Inclusive Final State Selection

- $E_T^{miss} < 40 \text{ GeV}$ (RefFinalEM)
- $|\sin\Delta\phi_{\mu\mu}| < 0.75$
- $\sum p_T^{jet} < 90~{\rm GeV}$

Inclusive Analysis Cutflow

Cut Evolution in Inclusive Analysis

- Monte Carlo content consistent with data after Preselection \rightarrow contributions from QCD and diboson event neglected.
- Fraction of events passing all cuts: $\sim 2\cdot 10^{-3}.$

The Inclusive Final State

- Tail of Z resonance provides overwhelming background even for high masses.
- $t\bar{t}$ contributes with continuous invariant mass distribution.

Expected and observed events in mass window [108, 132] GeV:

\dot{M}_A		expected				observed	
(GeV)		$signal(\tan \beta = 40)$	Z + jets	Z + b-jets	$t\bar{t}$	SM Total	Data 2011
120	± 12	34.7[2]	973[5]	7.9[5]	0.46[5]	982[5]	1002

LHC+ATLAS MSSM Higgs Bosons $A \rightarrow \mu^+ \mu$

- An estimate of the background is a crucial quantity for evaluating the discovery potential or exclusion limits.
- To reduce impact of systematic uncertainties it's desirable to estimate the background from data.

How to Estimate the Background from Data:

- An estimate of the background is a crucial quantity for evaluating the discovery potential or exclusion limits.
- To reduce impact of systematic uncertainties it's desirable to estimate the background from data.

How to Estimate the Background from Data:

- Fit to the side bands of signal region in $\mu^+\mu^-$ -distribution. \Rightarrow requires certain amount of statistics.

Dimuon Invariant Mass

- An estimate of the background is a crucial quantity for evaluating the discovery potential or exclusion limits.
- To reduce impact of systematic uncertainties it's desirable to estimate the background from data.

How to Estimate the Background from Data:

- Fit to the side bands of signal region in $\mu^+\mu^-$ -distribution.
- Use of signal-free control samples from e^+e^- final state. \Rightarrow requires good understanding of differences in electron and muon reconstruction.

Dielectron Invariant Mass

- An estimate of the background is a crucial quantity for evaluating the discovery potential or exclusion limits.
- To reduce impact of systematic uncertainties it's desirable to estimate the background from data.

How to Estimate the Background from Data:

- Fit to the side bands of signal region in $\mu^+\mu^-\text{-distribution}.$
- Use of signal-free control samples from e^+e^- final state.
- Combination of both methods: Use normalization parameters from side band fit and shape parameters from control sample.

LHC+ATLAS MSSM Higgs Bosons $A \rightarrow \mu^+ \mu^-$ Conclusion

Improvements to the Event Selection

Sensitivity is increased by separating the events into two complimentary final states:

- Event preselection.
- $E_T^{miss} < 40 \text{ GeV}$ (RefFinalEM)

"No b-jet final state"

- No reconstructed b-jets.

"b-jet final state"

- At least one b-jet.
- $|\sin \Delta \phi_{\mu\mu}| < 0.75$
- $\sum p_T^{jet} < 90~{\rm GeV}$

- By requiring a b-jet a huge fraction of $Z{\rm +}$ light jet background is rejected.
- Due to very high rejection b-jet selection opens up for $0.5-1~{\rm fb}^{-1}.$
- Possiblity to combine results of both final states is kept in mind.

LHC+ATLAS MSSM Higgs Bosons $A \rightarrow \mu^+ \mu^-$ Conclusions

Improvements to the Event Selection

Sensitivity is increased by separating the events into two complimentary final states:

- Event preselection.
- $E_T^{miss} < 40 \text{ GeV}$ (RefFinalEM)

"No b-jet final state"

- No reconstructed b-jets.

"b-jet final state"

- At least one b-jet.
- $|\sin \Delta \phi_{\mu\mu}| < 0.75$
- $\sum p_T^{jet} < 90~{\rm GeV}$

Why is this useful?

- By requiring a b-jet a huge fraction of Z+ light jet background is rejected.
- Due to very high rejection b-jet selection opens up for $0.5 1 \text{ fb}^{-1}$.
- Possiblity to combine results of both final states is kept in mind.

LHC+ATLAS MSSM Higgs Bosons $A o \mu^+ \mu^-$ Conclusions

Improvements to the Event Selection

Sensitivity is increased by separating the events into two complimentary final states:

- Event preselection.
- $E_T^{miss} < 40 \text{ GeV}$ (RefFinalEM)

"No b-jet final state"

- No reconstructed b-jets.

"b-jet final state"

- At least one b-jet.
- $|\sin \Delta \phi_{\mu\mu}| < 0.75$
- $\sum p_T^{jet} < 90~{\rm GeV}$

- By requiring a b-jet a huge fraction of $Z{\rm +}$ light jet background is rejected.
- Due to very high rejection b-jet selection opens up for $0.5-1~{\rm fb}^{-1}.$
- Possiblity to combine results of both final states is kept in mind.

LHC+ATLAS MSSM Higgs Bosons $A \rightarrow \mu^+ \mu^-$ Conclusions

- This year ATLAS will become sensitive to various New Physics processes.
- Also the $h/A/H \rightarrow \mu^+\mu^-$ channel will open up, which
 - can contribute to exclusion limits set by $h/A/H \rightarrow \tau^+ \tau^-$ and
 - is essential for a potential Higgs mass measurement.
- Control of the background is crucial \rightarrow independent methods are pursued.
- By having an integrated luminosity $>500~{\rm pb}^{-1}$ the event selection can be tightened
 - \Rightarrow clear improvement in sensitivity is expected.

Outlook

Full analysis including exclusion limits is planed to go into a summer conference note by the end of July.