

The LHC as Lepton–Proton Collider: Searches for Resonant Production of Leptoquarks

Daniel Buchin

Max Planck Institute for Physics

Monday 18th July, 2022

- Leptoquarks
- Searches for Leptoquarks and what is special about this one
- Challenges in the signal generation
- First results on how our signal presents itself
- Strange quarks in protons

Leptoquarks

- Typically occur in Grand Unified Theories
- Can provide an appealing solution to observed flavour anomalies
- Couple simultaneously to leptons and quarks
 - $\rightarrow~$ Carry both ${\bf colour}$ and ${\bf electric}$ charge
 - ightarrow Baryon and lepton number both non-zero
 - $\rightarrow~$ Usually decay into a lepton-quark pair

A wide variety of candidates

Different electric charges possible

Inter and intra-generation couplings

Scalar or vector boson

LQ Models

- LQ models with fixed SM quantum numbers, e.g. scalar S₁ = (3, 1, 4/3)
 - LQ model determines allowed decay modes
 - Some searches do not specify LQ model \rightarrow branching ratios (BRs) as search parameters

 v^{ij} allowed

LQs can resolve tensions in measurements of lepton flavour universality

$$R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+)}{\mathcal{B}(B^+ \to K^+ e^+)}$$

> 3 σ below SM prediction (arXiv:2103.11769)

$\mathcal{R}(D)$

$$\mathcal{R}(D) = \frac{\mathcal{B}(B \to D\tau\nu_{\tau})}{\mathcal{B}(B \to Dl\nu_l)}$$

> 3 σ above SM prediction (arXiv:1711.02505)

 R_K

Existing Searches at the LHC

- Main current search strategies consider Pair Production (PP) and Single Production (SP)
- PP independent of coupling strength $y^{ij}(\lambda)$
- Sensitive to LQ masses around 1-2 TeV

ATLAS-CONF-2021-045

Resonant Leptoquark Production

- Production mode not yet probed at the LHC
- Novel approach: utilize lepton content of proton originating from quantum fluctuations
- Lepton+Jet final state not covered by existing ATLAS searches at Run 2

- Production rate sensitive to both mass and coupling parameters
- \rightarrow Phenomenological studies suggest competitive sensitivity to existing PP and SP searches (arXiv:2005.06475, arXiv:2012.11474)

Signal Generation Studies

- Main challenge: limited support to lepton parton distribution functions (PDFs) in the common ATLAS event generation software
- Private Event Generation configuration necessary
- First step: simulation of the hard process
- For the resonant LQ production, e.g.:

 \rightarrow Done using special version of the **MadGraph** software that supports leptons in the proton

Signal Generation Studies

Next step: parton showering

- Includes hadronisation, simulation of the underlying event, ...
- $\rightarrow\,$ Done using official version of the Pythia software inside ATLAS framework
 - But: 'hack' needed, pretend that initial state leptons are photons
 - Can be done alternatively using the Herwig software, no hack needed in newest versions!

- To validate this generation setup, key kinematic properties of the LQ production are studied at the particle level
 - Simulated events in a state as 'right before entering the detector'

07/18/2022

Particle-Level Studies

- Assume simple scalar LQ model: \tilde{S}_1 (charge -4/3, SU(2) singlet)
 - One decay mode involving a **charged lepton** and a **down-type quark** (both right-handed)
- \blacksquare Assume only intra-generation couplings \rightarrow three processes:

Daniel Buchin - Resonant Leptoquark Production

 $\rightarrow\,$ Treat these three processes separately and optimize dedicated analyses

- Invariant mass of the lepton-jet system defined as:

$$m_{\ell j}^2 = (E_\ell + E_j)^2 - \left(\overrightarrow{p_\ell} + \overrightarrow{p_j}\right)^2$$

- ightarrow Estimate of the LQ mass
 - Sensitivity to LQ signal by performing **bump hunt** on m_{lj} spectrum

- Dominant backgrounds:
 - Multijet

- **Z** + jet

 \overline{a}'

Invariant Mass of LQ Decay Products

- Invariant Mass most important observable for this search
- Objects used for the definition in the 1st and 2nd generation:
 - Leading (highest p_T) lepton and leading jet of the event
 - $\rightarrow\,$ As expected: clear peak at the mass of the LQ resonance

Invariant Mass of LQ Decay Products

- For couplings to 3rd generation:
 - Leading hadronic tau and leading b-jet of the event
 - $\rightarrow\,$ Peak is smeared as expected due to neutrino in the tau decay
- Possibility to use leading lepton instead of hadronic tau to get leptonic taus

Hadronic Tau Decay

Leptonic Tau Decay

Daniel Buchin - Resonant Leptoquark Production

Angular Distance between Decay Products

- Introducing the lorentz-invariant pseudorapidity $\eta = -\ln\left(\tan\left(\frac{\theta}{2}\right)\right)$
- Angular distance defined as:

$$\mathsf{dR}(\ell_1,\mathsf{Jet}_1) = \sqrt{\Delta\eta^2 + \Delta\phi^2}$$

Lepton and jet well separated, as expected

07/18/2022

Herwig vs Pythia

- Observables behave as expected when Pythia used for parton showering, what about Herwig?
- $\rightarrow\,$ Open question in Herwig generation:
 - $-~\approx$ 30 % of events get discarded during simulation
 - 'Physical' consequences? \rightarrow check observables!

- Sharper peak in m_{lj} with Herwig, differences in jet multiplicity
 - Due to event loss in Herwig?

07/18/2022

Charge Asymmetry

- One observable showed surprising behaviour though
- $\rightarrow\,$ Lepton charge, i.e. occurrence of LQs vs Anti-LQs, is asymmetric in 2nd generation

Asymmetry in 1st generation expected due to valence *d*-quark in initial state, no asymmetries expected in other generations due to sea-quarks in initial state

Intermezzo: PDFs

- Short reminder: PDFs describe the probability f(x, Q²) that a certain parton of the proton
 - carries a certain fraction x of the proton momentum
 - at a certain scale Q (e.g. the LQ mass in this case)

ightarrow Parametrisation of the proton structure

- Different, independent implementations of PDFs available to be used in simulations of *pp* collisions, e.g. by the NNPDF collaboration
- Special and at the moment unique implementation that includes lepton PDFs was used for this study (LUXlep-NNPDF31-NLO)

Strange Quarks in the Proton

- Change to the resonant production of W' which does not need initial state leptons \rightarrow cross check with different PDF implementations
- Look at how often $\overline{cs} > W'^- > \overline{cs}$ occurs compared to $c\overline{s} > W'^+ > c\overline{s}$ with different PDF sets

- NNPDF sets predict significant strange/anti-strange asymmetry in proton for high x and Q
- \rightarrow Expected behaviour! (at least for LUXlep)

Daniel Buchin - Resonant Leptoquark Production

ertain point of view

- First study of the Leptoquark resonant production at the LHC
- Event generation involving lepton PDFs requires a special setup
- Setup validation through the studies of kinematic properties at particle level
 - $\rightarrow\,$ Distributions of key observables behave as expected
- Next steps:
 - Develop and optimize analysis using signal samples with simulated detector response:
 - ightarrow Estimate sensitivity to these signals via a "bump-hunt" on the m_{lj} spectrum
 - Possible extension to more LQ models, e.g. vector LQs
 - $\rightarrow~$ and final states, i.e. $e/\mu/\tau$ x light jet/c-jet/b-jet

BACKUP

07/18/2022

- Arrange different LQs w.r.t. their SM quantum numbers
- Six multiplets for scalar and vector LQs, respectively
- Chirality of interacting fermions depends on the spin and SU(2) multiplet of the LQ

(S	U(3), SU(2), U(1))	Spin	Symbol	Type	F
	$({f \overline{3}},{f 3},1/3)$	0	S_3	$LL\left(S_{1}^{L} ight)$	-2
	$({\bf 3},{f 2},7/6)$	0	R_2	$RL\left(S_{1/2}^{L} ight),LR\left(S_{1/2}^{R} ight)$	0
	$({\bf 3},{\bf 2},1/6)$	0	\tilde{R}_2	$RL\left(\tilde{S}_{1/2}^{L}\right), \overline{LR}\left(\tilde{S}_{1/2}^{\overline{L}}\right)$	0
	$(\overline{3},1,4/3)$	0	\tilde{S}_1	$RR\left(ilde{S}_{0}^{R} ight)$	-2
	$(\overline{3},1,1/3)$	0	S_1	$LL\left(S_{0}^{L} ight),RR\left(S_{0}^{R} ight),\overline{RR}\left(S_{0}^{\overline{R}} ight)$	-2
	$(\overline{3},1,-2/3)$	0	\bar{S}_1	$\overline{RR}(ar{S}_0^{\overline{R}})$	-2
	(3, 3, 2/3)	1	U_3	$LL(V_1^L)$	0
	$({\bf \overline{3}},{\bf 2},5/6)$	1	V_2	$RL(V_{1/2}^L), LR(V_{1/2}^R)$	-2
	$(\overline{3}, 2, -1/6)$	1	\tilde{V}_2	$RL\left(ilde{V}_{1/2}^{\dot{L}} ight),\overline{LR}\left(ilde{V}_{1/2}^{\overline{R}} ight)$	-2
	$({\bf 3},{f 1},5/3)$	1	\tilde{U}_1	$\hat{R}R\left(ilde{V}_{0}^{R} ight)$	0
	$({\bf 3},{f 1},2/3)$	1	U_1	$LL\left(V_{0}^{L} ight),RR\left(V_{0}^{R} ight),\overline{RR}\left(V_{0}^{\overline{R}} ight)$	0
	(3, 1, -1/3)	1	\overline{U}_1	$\overline{RR}(\overline{V}_0^{\overline{R}})$	0

arXiv:1603.04993

LQ Candidates in B-Physics

Model	$R_{K^{(*)}}$	$R_{D^{(*)}}$	$R_{K^{(*)}} \ \& \ R_{D^{(*)}}$
S_1	X *	✓	× *
R_2	X *	\checkmark	×
$\widetilde{R_2}$	×	×	×
S_3	\checkmark	×	×
U_1	\checkmark	~	\checkmark
U_3	\checkmark	×	×

arXiv:1808.08179

Phenomenological Studies

Phenomenological papers on resonant LQ production:

Xiv:2005.0647

- Targets scalar LQs with right-handed couplings
- Two different final states: eu and ed (1st/2nd generation)

v:2012.11474

- Targets vector LQ model: $U_1 = (\mathbf{3}, \mathbf{1}, 2/3)$
- Mainly 3rd generation final states $(b_L \tau_L, b_R \tau_R \text{ and } \nu_{\tau L} t_L)$

• **Private MadGraph + Pythia** configuration necessary:

- Hard Process event generation with dedicated MadGraph version that gives access to leptons in the proton
- Proton PDF including leptons needed
- Parton showering done using official Pythia version, but:
 - Some "hacks" needed, i.e. replace initial state leptons with photons in the input LHE file
 - $\rightarrow\,$ Disable event check to circumvent charge conservation check

MadGraph → LHE file ^{'hacks'} Pythia → Particle Level Events

 To validate this generation setup, key kinematic properties of the LQ production are studied at the particle (truth) level

Cross Section for the Resonant Production

- Leading Order (LO) cross sections calculated using MadGraph
- Verified that values are compatible with cross sections used by authors of phenomenological paper
- 2nd and 3rd generation suppressed due to suppressed s- and b-quark content of the proton

07/18/2022

Invariant Masses: LHE vs Particle level

- Ist generation: leading lepton and leading jet
- For 3rd generation: leading tau and leading b-jet

• Distributions smeared at high masses due to LQ decay width Γ_{LQ}

Scalar LQ Decay Width ${\sf \Gamma}_{ ilde{\mathcal{S}}_1}\simeq rac{1}{16\pi}\sum_{ii}|y^{ij}|^2m_{ ilde{\mathcal{S}}_1}$

 MG's bwcutoff parameter (default: 15) steers if an intermediate particle counts as on-shell:

$$m_{LQ} - bwcutoff \cdot \Gamma_{LQ} \le m_{\ell j} \le m_{LQ} + bwcutoff \cdot \Gamma_{LQ}$$

- Only on-shell particles appear in LHE file → important for truth studies (e.g. MCTruthClassifier doesn't label leptons from off-shell LQs as prompt)
- Noticed that fraction of events with no explicit LQ in LHE relatively large in 3rd gen (11 % at 2 TeV)
- $\:$ Can mitigate this by increasing bwcutoff to 50 \rightarrow didn't observe notable changes in distributions

Effect of bwcutoff parameter in MadGraph

Invariant mass of leading tau and leading b-jet for 3rd gen. Events (Density) Events (Density) ATLAS Work in progress $\sqrt{s} = 13$ TeV, \tilde{S}_1 ATLAS Work in progress m_{1.0} = 2 TeV, y_R¹¹ = 1 4 0 F $\sqrt{s} = 13 \text{ TeV}, \tilde{S}_1$ rejected: 5.2% 4.0F $m_{10} = 2 \text{ TeV}, y_B^{22} = 1.0$ 3.5 rejected: 8.1% 3.5 E m10 = 2 TeV, y_B³³ = 1.0 rejected: 42.9% 3.0 3.0E 2.5 2.5 2.0 2.0F 1.5 1.5 E 1.0F 1.0E 0.5 0.5F 0.0E 0.0E 2500 2000 3000 3500 1500 500 1000 mr., [GeV] ×10⁻³ ×10⁻³ Events (Density) Events (Density) ATLAS Work in progress 4.0 = 13 TeV. S., bwcutoff=50 mLO = 2 TeV, y_R¹¹ = 1.0 rejected: 0.7% 4.0F $\sqrt{s} = 13$ TeV. \tilde{S}_1 , bwcutoff=50 $m_{1,0} = 2 \text{ TeV}, y_B^{22} = 1.0$ rejected: 0.7% 3.5È 3 mic=2 TeV, v³³=1.0 rejected: 36.0% 3.0 3.0E 2.5 2.5F 2.0 2.0È 1.5 1.5E 1.0 1.0E 0.5 0.5E 0.0 0.0E 3500 500 1000 1500 2000 3000 500 1000 1500 m_{f,i}, [GeV]

Invariant mass of leading lepton and leading jet for 3rd gen.

mLQ = 2 TeV, y_R¹¹ rejected: 5.2%

rejected: 69.7%

mLQ = 2 TeV, y_R²² = 1.0 rejected: 8.1%

 $m_{LQ} = 2 \text{ TeV}, y_R^{S3} = 1.0$

3000

m_{LQ} = 2 TeV, y_R¹¹ = 1.0 rejected: 0.7%

m_{LO} = 2 TeV, y_B²² = 1.0

mLg = 2 TeV, y_R³⁰ = 1.0 rejected: 66.7%

m_{f.i}, [GeV]

rejected: 0.7%

m.,, [GeV]

3500

2500

2000 2500 3000 3500

07/18/2022

Daniel Buchin - Resonant Leptoquark Production

Outlook: Vector Leptoquarks

- Vector U₁ = (3, 1, 2/3) model able to resolve tensions in both R_K and R(D) measurements
- Complications:
 - More decay modes (up-type quark + neutrino, chirality sensitive \rightarrow separate β_L , β_R)
 - Vector LQ models require additional vector bosons G' and Z'
 - ightarrow Additional t-channel diagram with Z'
 - Width-to-mass ratio > 10 % for larger couplings

$$\Gamma(U_1 \to \tau^+ b) \simeq \frac{g_U^2}{48\pi} \sum_{ij} \left(|\beta_L^{ij}|^2 + |\beta_R^{ij}|^2 \right) m_{U_1}$$

Daniel Buchin - Resonant Leptoquark Production

m_{lq} [GeV] B/U 10

Outlook: LHC Run 3

- LHC Run 3 with higher $\sqrt{s} = 13.6$ TeV (Run 2: $\sqrt{s} = 13$ TeV)
- 15-20% higher cross sections for LQ masses between 2-3 TeV
- Including early Run 3 data potentially interesting for this search

- Parton showered events are analysed using SimpleAnalysis software framework
- Applied kinematic requirements on truth objects to mimic acceptance at reconstruction-level:
 - Jets: $\it p_T > 20~GeV$, $\eta < 2.8$
 - Electrons: p_{T} > 10 GeV, η < 2.47
 - Muons: $p_{
 m T}$ > 10 GeV, η < 2.7
 - Taus: p_{T} > 20 GeV, η < 2.5
 - OR of jets within $\Delta R < 0.4$ of a lepton and electrons within $\Delta R < 0.01$ of a muon

- As expected, p_T peak and cutoff at m_{LQ}/2
- Tau p_T smeared due to neutrino from the decay

Multiplicities

• Multiplicities behave as expected; high occurrence of 2nd b-jets in 3rd generation case still

being studied

07/18/2022

Daniel Buchin - Resonant Leptoquark Production

Daniel Buchin - Resonant Leptoquark Production

07/18/2022

Daniel Buchin - Resonant Leptoquark Production