α_{s} Determination via the Differential 2-Jet-Rate with ATLAS

Markus Lichtnecker

LMU München, LS Schaile

Particle Physics School Colloquium, 17.06.2011

Markus Lichtnecker α_s Determination via the Differential 2-Jet-Rate with ATLAS

Outline

- Jet-Algorithm
- α_s and NLOJET++
- Real Data Analysis
 - Separation from 4-Jet-Events
 - Comparison to Simulation
- Corrections
 - Jet-Energy-Scale
 - Hadronization
 - Underlying Event
- α_s -Fit and Systematic Unc.
- Summary

 $\begin{array}{c} \alpha_{\rm s} \mbox{ and NLOJet} ++ \\ {\rm Real \ Data \ Alanysis} \\ \alpha_{\rm s}\mbox{-Fit and \ Systematic \ Uncertainties} \end{array}$

Jets

- Jets very important for many physics analysis: QCD, Top-Quark, Higgs, SUSY, etc.
- large statistics \rightarrow first data analysis e.g. α_s determination
- several different Jet-Algorithms available (different physical and theoretical motivations)
- \bullet two big groups: Cone- and $k_T\mbox{-Jets}$

 $\begin{array}{c} \alpha_s \text{ and } \mathsf{NLOJet}++\\ \mathsf{Real Data Alanysis}\\ \mathsf{Corrections}\\ \alpha_s\text{-Fit and Systematic Uncertainties} \end{array}$

Exclusive k_T -Algorithm, ΔR -scheme

- *d_{min}*: smallest value among
 d_{kB} and *d_{kl}*
- $\bullet \ d_{Cut}$: cut-off parameter until jets are merged
- $d_{\min} > d_{Cut}$: all remaining objects are classified as jets
- if *d_{kl}* is smallest, k and I are combined
- if d_{kB} is smallest, k is included in beam jet
- jet-size is dynamic, no overlapping jets

 $\begin{array}{c} \alpha_{\rm s} \mbox{ and NLOJet}++\\ {\rm Real \ Data \ Alanysis}\\ {\rm Corrections}\\ \alpha_{\rm s}\mbox{-Fit and \ Systematic \ Uncertainties} \end{array}$

Exclusive k_T -Algorithm, ΔR -scheme

- infrared- and collinearsafe
- clusters objects close in momentum space:

 $d_{min} = \min \left[d_{kl} = \min(p_{Tk}^2, p_{Tl}^2) * R^2 \text{ and } d_{kB} = p_{Tk}^2 \right]$ (with $R = \sqrt{\Delta \eta^2 + \Delta \Phi^2}$)

- ightarrow objects clustered to jets until $d_{min} \geq d_{cut}$
- ightarrow number of jets in final state depends on d_{cut}
- here (other way round): interested in d_{cut} for specific jetmultiplicity
 - \rightarrow $\mathrm{d}_{23}:$ $\textit{d}_{\textit{cut}}\text{-value}$ where jetmultiplicity flips from 3 to 2
 - $\rightarrow {\rm d}_{34}{:}$ $\textit{d}_{\textit{cut}}{\text{-}}{\text{value}}$ where jetmultiplicity flips from 4 to 3

Markus Lichtnecker α_s Determination via the Differential 2-Jet-Rate with ATLAS

 $lpha_{\rm s}$ and NLOJet++ Real Data Alanysis Corrections $lpha_{\rm s} ext{-Fit}$ and Systematic Uncertainties

Exclusive k_T -Algorithm, ΔR -scheme

green: leading jet

(plots from C. Schmitt)

Strong coupling constant α_s

•
$$\alpha_s = \frac{g_s^2}{4\pi}$$
 with color charge g_s

• processes with gluons needed to evaluate α_s (strength of gluon-coupling on colored particles = α_s)

α_s and Jets in hadron collisions

- $\bullet \ \sigma \sim \alpha_{\rm s}^2$
- no emission of additional parton

- $\sigma \sim \alpha_{\rm s}^{\rm 3}$
- emission of additional parton
- in theory: infrared and collinear divergences

 → need infrared- and collinearsafe observables,
 e.g. k_T-Jets

NLOJET++

- NLOJET++ (version 4.1.3)
- by Zoltan Nagy
- used to generate inclusive 3 parton production @ NLO (Next-to-leading-order)
- \bullet e.g. Jet- $\rm p_{T}\text{-}distributions$ for born, nlo and full (born+nlo)

Markus Lichtnecker α_s Determination via the Differential 2-Jet-Rate with ATLAS

٩

number of events with 3 Jets in final state number of events

$$R_3 = \frac{\sigma_{3Jets}}{\sigma_{2Jets} + \sigma_{3Jets}}$$

- in LO proportional to α_s
- for more exact determination: NLO calculations $R_3(d_{23}) = A(d_{23}) * \alpha_s + B(d_{23}) * \alpha_s^2$
- entries in R_3 -distribution are correlated \rightarrow slope of R_3 -distribution is uncorrelated

$$R_2 = 1 - R_3(-R_4)$$

 \rightarrow in experiment: measure regions where ${\it R}_4$ is negligible

Differential 2-Jet-Rate

$$D_{23} = \frac{\Delta R_2}{\Delta d_{23}} = -\frac{\Delta R_3}{\Delta d_{23}} =$$
$$\frac{\Delta A(d_{23})}{\Delta d_{23}} * \alpha_s + \frac{\Delta B(d_{23})}{\Delta d_{23}} * \alpha_s^2$$
$$= \frac{1}{N} * \frac{\Delta N}{\Delta d_{23}}$$

D_{23} (NLOJet++)

(many different values of Q)

Principle of $\alpha_{\rm s}$ measurement

- $\alpha_{
 m s}$ depends on ${\it Q}$
- $Q \cong p_{T, leading Jet}$

 d_{23} distribution (p_{T,leading} Jet : 80 - 100 GeV)

Principle of $\alpha_{\rm s}$ measurement

۲

$$D_{23} = \frac{1}{N} * \frac{\Delta N(Q)}{\Delta d_{23}} =$$
$$\frac{\Delta A(d_{23}, Q)}{\Delta d_{23}} * \alpha_s(Q) + \frac{\Delta B(d_{23}, Q)}{\Delta d_{23}} * \alpha_s^2(Q)$$

• get $\frac{1}{N} * \frac{\Delta N(Q)}{\Delta d_{23}}$ from measured data

• obtain
$$\frac{\Delta A(d_{23},Q)}{\Delta d_{23}}$$
 (=born) and $\frac{\Delta B(d_{23},Q)}{\Delta d_{23}}$ (=nlo) from NLOJET++

 \rightarrow evaluate $\alpha_{\rm s}$ from fits on $\mathit{D}_{\rm 23}\text{-distribution}$

Separation from 4-Jet-Events

Comparison to simulation

- PYTHIA dijet samples with truth and reco jets
- cuts: $p_T(jets) > 20$ GeV, $|\eta| < 2.6$, $d_{23} > 400$ GeV²

good match between simulation and data!

Jet-Energy-Scale

Correction factor

$$ightarrow d_{23,data(JES\ corrected)} = H^i_{JES}(d_{23}) imes d_{23,data}$$

Hadronization

Simulation with PYTHIA (version 6.4.24)

Hadronization

Correction factor

$$o d_{23,NLOJET++(hadr)} = H^i_{hadr}(d_{23}) imes d_{23,NLOJET++}$$

Underlying Event

Simulation with PYTHIA (version 6.4.24)

Underlying Event

Correction factor (here: AMBT1)

$$imes d_{23,NLOJET++(UE)} = H^i_{UE}(d_{23}) imes d_{23,NLOJET++(hadr)}$$

Determination of α_s

 χ^2 -Fit on data:

JES Uncertainty

 $\Delta \alpha_s^{sys.}(M_Z)[JES] = \pm 0.004$

Impurity due to 4-Jet-Events

 $\Delta \alpha_s^{sys.}(M_Z)[4jet] = \pm 0.002$

PDF Uncertainty

 $\Delta \alpha_s^{\text{sys.}}(M_Z)[PDF] = \pm 0.001$

Hadronization Uncertainty

 $\Delta \alpha_s^{sys.}(M_Z)[hadr.] = \pm 0.001$

Underlying Event Uncertainty

 $\Delta \alpha_s^{\rm sys.}(M_Z)[UE] = \pm 0.001$

Comparison to Theory Curve

(theory curve defined @ $\alpha_s(M_Z) = 0.1184 \pm 0.0007$) determination of α_s with ATLAS at LHC: $\alpha_s(M_Z) = 0.120 \pm 0.001(stat.) \pm 0.005(syst.)$ \rightarrow good agreement with current world average!

- NLOJET++ useful for NLO calculations
- Real Data Analysis
 - good match between simulation and data
 - D_{23} (differential 2-Jet-Rate) can be used to determine $lpha_{
 m s}$
 - corrections applied: JES, hadronization, UE
 - determination of α_s with ATLAS at LHC: $\alpha_s(M_Z) = 0.120 \pm 0.001(stat.) \pm 0.005(syst.)$
- outlook: go on vacation!