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1 Introduction

Many physical parameters of top quark have been measured during last years (mass, decay width,
branching ratios, cross sections, etc.) and the values obtained are compatible with the theoretical
prediction of the SM. There are anyway some physical observables [1] that present a possible dis-
crepancy from the SM prevision, and the forward-backward asymmetry AFB of top pair production
induced by pp̄ collision [2][3] is one of them.
The definitions of AFB used in the last measurement of CDF [4] are

Att̄
FB =

σ(∆y > 0)− σ(∆y < 0)

σ(∆y > 0) + σ(∆y < 0)
(1)

and

App̄
FB =

σ(yt > 0)− σ(yt < 0)

σ(yt > 0) + σ(yt < 0)
(2)

where ∆y is defined as the difference between the rapidity yt and yt̄. ∆y (not yt) is invariant under
boost along the z-axis so it is the same in the partonic and hadronic rest frame.
The value obtained by CDF are:

Att̄
FB = 0.158± 0.075 (3)

App̄
FB = 0.150± 0.055

The LO predictions of Att̄
FB(A

pp̄
FB) without cuts are around 7.5%(5%) [5] and comes from NLO

QCD corrections of the differential cross section of tt̄ . The most important corrections (NLO of
QCD) to Att̄

FB(A
pp̄
FB) include the NNLO for the differential cross section, but this terms haven’t

been calculated so far because their nontrivial structure.
In order to fill the gap between experimental and theoretical results, different BSM models have
been proposed. Anyway the compatibility with the SM is not ruled out, so at least the calculation
of the NLO corrections of QCD and EW are mandatory. The EW NLO corrections are much
simpler and indeed they have been already calculated. We reexamined and reevaluated the LO and
complete O(α) corrections and we found sizable differences with the preview results.
The calculation of Att̄

FB is presented also with the cuts Mtt̄ > 450 GeV and |∆y| > 1 in order to
make a comparison with the values in [4]

Att̄
FB(Mtt̄ ≥ 450 GeV) = 0.475± 0.114 Att̄

FB(|∆y| ≥ 1) = 0.611± 0.256 (4)

that show the largest discrepancy with QCD LO prediction.
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we assign a systematic uncertainty of 0.035 for this effect.

Additional systematic uncertainties are evaluated in

a manner similar to the inclusive case. These uncertain-

ties are estimated by repeating the analysis while varying

the model assumptions within their known uncertainties

for background normalization and shape, the amount of

initial- and final-state radiation (ISR/FSR) in pythia,
the calorimeter jet energy scale (JES), the model of fi-

nal state color connection, and parton distribution func-

tions (PDF). Table XII shows the expected size of all

systematic uncertainties. The physics model dependence

dominates.

TABLE XIII: Asymmetry Att̄ at high and low mass compared
to prediction.

selection Mtt̄ < 450 GeV/c2 Mtt̄ ≥ 450 GeV/c2

data −0.016± 0.034 0.210± 0.049
tt̄+bkg +0.012± 0.006 0.030± 0.007
(mc@nlo)
data signal −0.022± 0.039± 0.017 0.266± 0.053± 0.032
tt̄ +0.015± 0.006 0.043± 0.009
(mc@nlo)
data parton −0.116± 0.146± 0.047 0.475± 0.101± 0.049
mcfm +0.040± 0.006 0.088± 0.013

Table XIII compares the low and high mass asymme-

try to predictions for the data level, the background sub-

tracted signal-level, and the fully corrected parton-level.

The MC predictions include the 15% theoretical uncer-

tainty. At low mass, within uncertainties, the asymmetry

at all correction levels agrees with predictions consistent

with zero. At high mass, combining statistical and sys-

tematic uncertainties in quadrature, the asymmetries at

all levels exceed the predictions by more than three stan-

dard deviations. The parton-level comparison is summa-

rized in Fig. 14. For Mtt̄ ≥ 450 GeV/c2, the parton-level
asymmetry at in the tt̄ rest frame is Att̄ = 0.475± 0.114
(stat+sys), compared with the MCFM prediction of

Att̄ = 0.088± 0.013.

VIII. CROSS-CHECKS OF THE MASS
DEPENDENT ASYMMETRY

The large and unexpected asymmetry at high mass de-

mands a broader study of related effects in the tt̄ data.
We look for anomalies that could be evidence of a false

positive, along with correlations that could reveal more

about a true positive. In order to avoid any assumptions

related to the background subtraction, we make compar-

isons at the data level, appealing when necessary to the

full tt̄ + bkg simulation models.
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FIG. 14: Parton-level asymmetry in ∆y at high and low mass
compared to mcfm prediction. The shaded region represents
the total uncertainty in each bin.
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FIG. 15: Distribution of tt̄ reconstruction χ2. Black crosses
are data, histogram is sig+bkg prediction.The last bin on the
right contains all events with χ2 > 100.

A. Lepton Type

All of our simulated models predict asymmetries that

are independent of the lepton type: pythia predicts

asymmetries that are consistent with zero, and the Octet

models predict asymmetries that are consistent with each

other. The data are shown in Table XIV. At high mass,

both lepton types show positive asymmetries consistent

within errors.

Only NLO QCD,
let’s see SM 
prediction!

Theory Experiment

AFB(%) Att̄
FB App̄

FB

data 15.8± 7.4 15.0± 5.5

MCFM 5.8± 0.9 3.8± 0.6
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Figure 1: Real emissions of gluon: photon in the propagator
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Figure 2: Real emissions of gluon: photon in the propagator
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Figure 3: Real emissions of gluon: photon in the propagator

1

kp1
kp2

kt kt̄ kX
k′p1

k′p2
k′t k

′

t̄ k
′

X

k′i = (k0i , k
1
i , k

2
i ,−k3i )

(Att̄
FB)

EW

(Att̄
FB)

QCD
= (0.190, 0.220, 0.254)

(App̄
FB)

EW

(App̄
FB)

QCD
= (0.186, 0.218, 0.243) (1)

AEW
FB = 0.09×AQCD

FB (2)

AEW
FB ∼ 0.25×AQCD

FB (3)

pp̄ → tt̄+X

q

q

t

tg

q

q

t

t

q

g

g

t

Figure 1: Real emissions of gluon: photon in the propagator

yt =
1

2
log

(E + pz
E − pz

)

(4)

∆y = yt − yt̄ (5)

σ(H1H2 → tt̄+X) = σ(p1p2 → tt̄+X)⊗
[

fp1,H1
(x1)fp2,H2

(x2) + fp1,H2
(x1)fp2,H1

(x2)
]

(6)

Mp1p2→tt̄+X(kp1
, kp2

, kt, kt̄, kX) = Mp1p2→tt̄+X(k′p1
, k′p2

, k′t, k
′

t̄, k
′

X) (7)
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Hadronic process = partonic process ⊗ PDF
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Hadronic process = partonic process ⊗ PDF

Partonic process can be produced in two different directions 
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∣

∣
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∣

∣

∣

2

=
∣

∣

∣
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At LHC H1=H2 → AFB=0
At Tevatron only processes with p1 or p2 = (up, antiup, down, antidown) can 
produce asymmetric terms!

Hadronic process = partonic process ⊗ PDF

Partonic process can be produced in two different directions 

2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.
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that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.
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In this work we reevaluated all the contributions that are presented in in the last term of (8).
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Figure 1: Born diagrams

In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3

At LO partonic processes are not asymmetric.
QCD produces the asymmetry only at NLO!
NLO in the cross-section, LO in AFB

2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.
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approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
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2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:
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(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
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Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.

2

In this work we reevaluated all the contributions that are presented in in the last term of (8).
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Figure 1: Born diagrams

In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.
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q − 2Qq sin
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The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry
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Different couplings for different 
chiralities produce asymmetric 
terms in the cross-section
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2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=
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sN1 + α2

sαÑ1 + α4
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1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of
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Figure 3: Real emissions of gluon

initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.
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The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
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g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB
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Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
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In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
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At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
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O(α3
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In this work we reevaluated all the contributions that are presented in in the last term of (8).
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Figure 1: Born diagrams

In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.
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Z)

2

]
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κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3

Different couplings for different 
chiralities produce asymmetric 
terms in the cross-section
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Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄
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σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:
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It’s useful to divide electroweak contribution into 
QED (photon) and weak (Z) part. 

QED QED can be easily obtained from QCD calculation and the substitution of one 
gluon into one photon in the squared amplitudes.
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Figure 4: Three different way of replacing one gluon with a photon in the propagator of the
interference of Fig. 2 and qq̄ → g → tt̄

averaging in the initial state we find that
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where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄

QCD) and QED (F tt̄
QED) cases, and obtain the ratio of them.
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In F tt̄
QCD there are two different color structures and the result depends on d2 = dABCdABC = 40

3

that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of
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Figure 3: Real emissions of gluon

initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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In this work we reevaluated all the contributions that are presented in in the last term of (8).
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In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3



2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.

2

It’s useful to divide electroweak contribution into 
QED (photon) and weak (Z) part. 

QED QED can be easily obtained from QCD calculation and the substitution of one 
gluon into one photon in the squared amplitudes.
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Figure 4: Three different way of replacing one gluon with a photon in the propagator of the
interference of Fig. 2 and qq̄ → g → tt̄

averaging in the initial state we find that

|Mtt̄|
2

O(α2
sα),asym

|Mtt̄|
2

O(α3
s),asym

=
2Re

(

Mtt̄
O(α)M

tt̄ ∗
O(α2

s)

)

asym
+ 2Re

(

Mtt̄
O(αs)

Mtt̄ ∗
O(αsα)

)

asym

2Re
(

Mtt̄
O(αs)

Mtt̄ ∗
O(α2

s)

)

asym

=
F tt̄
QED(αs,α, Qt, Qq)

F tt̄
QCD(αs)

(10)
where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄

QCD) and QED (F tt̄
QED) cases, and obtain the ratio of them.

F tt̄
QCD =

g6s
9
δADδBF δECTr(t

AtBtC)
[1

2
Tr

(

tDtEtF
)

+
1

2
Tr

(

tDtF tE
)

]

=
g6s

16 · 9
d2 (11a)

F tt̄
QED = ntt̄

{g4se
2QqQt

9
δACδBDTr(tAtB)Tr(tCtD)

}

=
6g4se

2

9
QtQq (11b)

In F tt̄
QCD there are two different color structures and the result depends on d2 = dABCdABC = 40

3

that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.

|Mtt̄g|
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2
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=
2Re
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√
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√
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)
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F tt̄g
QCD, F tt̄g

QED and F tt̄γ
QED are related to F tt̄

QCD, F tt̄
QED by simple equations.

F tt̄g
QCD = F tt̄

QCD F tt̄g
QED =

2

3
F tt̄
QED F tt̄γ

QED =
1

3
F tt̄
QED (14a)

F tt̄
QED = F tt̄g

QED + F tt̄γ
QED (14b)

The first equation in (14a) is trivial, we couldn’t get the cancellation of the infrared singularity
without it. The same arguments applies also to equation (14b) that underlines how infrared finite-
ness for QED corrections can be obtained only combining tt̄, tt̄g and tt̄γ final states.
The O(α2

sα) of qq̄ → tt̄g comes from the interference of qq̄ → g → tt̄g (Fig. 3) and qq̄ → γ → tt̄g
(Fig. 5). This terms can be obtained from the results calculated in the QCD case, with the replace-
ment of one gluonic propagator with a photonic one and the right couplings, as we did in the case of
qq̄ → tt̄. The only difference is the number of replaceable gluonic propagators in the interferences
term: in the qq̄ → tt̄g case they are only two and not three.
The O(α2

sα) of qq̄ → tt̄γ comes from the squared module of the sum of qq̄ → g → tt̄γ diagrams
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Figure 5: Real emissions of gluon: photon in the propagator

(Fig. 6), and again its value can be obtained by the QCD case of the different process qq̄ → tt̄g.
In this case the particle replaced in the amplitudes is not virtual but real, so there is a one-to-one
relation between diagrams involved in QCD and QED cases.
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αÑ1

αsN1

= 0.09 (7)

Rtt̄
EW (Mtt̄ > 450 GeV) = (8)

(0.200, 0.232, 0.266) (9)

RQED(Qq) =
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of

q

q

t

t

g
g

t q

q

t

t
g

g

t

q

q

t

t

g

q

g q

q

t
t

g
q

g

Figure 3: Real emissions of gluon

initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3
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2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.

2

Weak
Z is not massless → If we write Weak=QCD × RWeak.

RWeak does not depend only on couplings and color factor

The same diagrams as QED part, but γ → Z.



QED correction can be obtained 
from QCD × RQED

yt =
1

2
log

�
E + pz

E − pz

�
(1)

∆y = yt − yt̄ (2)

fp1,H1(x1)fp2,H2(x2) (3)

fp1,H2(x1)fp2,H1(x2) (4)

H1H2 → tt̄+X (5)

O(αsα) = 0 (6)

αÑ1
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EXISTING ESTIMATE

Weak
Z is not massless → If we write Weak=QCD × RWeak.

RWeak does not depend only on couplings and color factor

The same diagrams as QED part, but γ → Z.
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RWeak does not depend only on couplings and color factor

The same diagrams as QED part, but γ → Z.
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Finally we see, thanks to the relations (14), that the O(α2
sα) of QED for qq̄ → tt̄ +X is equal to

the O(α3
s) times RQED(Qq)

RQED(Qq) =
αÑQED

1

αsN1
=

F tt̄
QED

F tt̄
QCD

= QqQt
36

5

α

αs
(15)

The pure weak contribution to the O(α2
sα) is depicted by the same diagrams of qq̄ → tt̄ and qq̄ → tt̄g

in the QED case, but with the photon substituted by Z. We aren’t able anymore to express their
contributions through the QCD result and a simple Rweak factor, indeed now the replacement of a
gluon with a Z introduces the mass of Z in the propagators. We could neglect the mass of Z for

the qq̄ → tt̄g case because the ratio of m2
Z and the threshold is very small ( m2

Z

4m2
t
= 0.06), but in

the boxes amplitude the virtuality of Z is not constrained, so the loop integral is different from the
QED case. We can only repeat the calculation following the phase space slicing method exposed
for the O(α3

s) case.
It’s worth noting that also qq̄ → tt̄Z could contribute to this order, but here this process is ignored
because its value is very tiny (10−5 in AFB) due to the effect of mZ in the phase space integration.
The same argument applies to ud̄ → tt̄W+ and Higgs radiation.
We could expect that also one loop weak corrections to the qq̄g vertex (iΛµ) give rise to contribution
to AFB , but they don’t. Looking at the terms that can appear in iΛµ:

iΛµ = −igst
A α

4π

[

γµFV + γµγ5GA +
(pq̄ − pq)µ

2mq
FM + (pq̄ + pq)µγ5GE

]

(16)

we can see that, in the interference with Born amplitude, terms proportional to GE and GA vanish
and obviously γµFV doesn’t contribute to AFB, otherwise also O(α2

s) would be relevant. In [9] we
see that also the term proportional to FM vanishes in the AFB calculation.

3 Numerical results

All the numerical results have been calculated with the help of Feynarts [10] and Formcalc[11] and
using the phase space slicing method . The values of the physical input parameter are:

α−1 = 137.035 mt = 172.0 GeV mZ = 91.1875 GeV mW = 80.399 GeV (17)

We chose MRST2004QED parton distributions for NLO calculations and MRST2001LO for LO,
but the values of αs(µ) given by the two distributions is different for fixed µ, so we used αs(µ) of
MRST2004QED also for the evaluation of the cross sections at LO [5]. The same value (µ) was
used also for the factorization scale, and numerical results are presented with three different scale
(µ = mt/2,mt, 2mt). In Tab. 1 there are the results obtained for the cross sections, that is the
denominator of AFB. The different terms in the numerator of Att̄

FB and App̄
FB are listed7 in Tab. 3

and the correspondent contributions to the asymmetry in Tab. 4.
The QED part of the O(α2

sα) was easily obtained from O(α3
s) thanks to (15), and the values

used for µ = (mt/2,mt, 2mt) are

Ruū
QED = (0.192, 0.214, 0.237) Rdd̄

QED = (−0.096,−0.107,−0.119) (18)

7All the calculations have been done using
√
s = 1.96 TeV in the hadronic collisions. Using 2 TeV the changes

are negligible in Tab. 4, but not in Tab. 1 and Tab. 3
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2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.
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Expansion makes sense if αs in N and D is the same.
αs from MRST2004QED → αs for NLO

αs?
αs for LO ≠
αs for NLO

Factorization scale µf
renormalization scale µr

µf = µr =(mt/2,mt,2mt)

Input

NUMERICAL RESULTS



Output

σ(pb) µ = mt/2 µ = mt µ = 2mt

uū 6.245 4.454 3.355

dd̄ 1.112 0.777 0.575

ss̄ 1.37× 10−2 9.60× 10−3 0.706 × 10−2

cc̄ 2.24× 10−3 1.69× 10−3 1.32× 10−3

gg 0.617 0.378 0.248

pp̄ 7.990 5.621 4.187

Table 1: Cross sections O(α2
s)

The same calculation has been repeated also with the phase space slicing method, starting from tt̄,
tt̄g and tt̄γ diagrams. The results, obtained in two different ways, are perfectly compatible. We
finally obtained the following values for the two definitions of AFB

Att̄
FB = (9.7, 8.9, 8.3)% App̄

FB = (6.4, 5.9, 5.4)% (19)

The ratio of the total O(α2
sα) and O(α3

s) contribution is very different from 0.09 as usually stated in
the previous calculation. It depends on αs so on µ, it gets only positive contributions from the uū
channel but negative from the QED part of dd̄ channel and, as already said, pure weak contribution
cannot be expressed with a simple Rweak factor.
Anyway the ratio of the total O(α2

sα) + O(α2) and O(α3
s) of N can be calculated in order to

compare the impact of EW and QCD asymmetric terms. The values obtained numerically for
µ = (mt/2,mt, 2mt) are:

Rtt̄
EW =

N tt̄
O(α2

sα)+O(α2)

N tt̄
O(α3

s)

= (0.190, 0.220, 0.254) Rpp̄
EW =

Npp̄
O(α2

sα)+O(α2)

Npp̄
O(α3

s)

= (0.186, 0.218, 0.243)

(20)
If we look at Fig. 7, we see that the theoretical prediction is almost inside 1σ deviation from data
for Att̄

FB and inside 2σ for App̄
FB, indeed the new factor 3 in front of the QED O(α2

sα) contribution
pushes the prediction towards the experimental data. The QED O(α2

sα) contribution of uū → tt̄ to
the asymmetry is even bigger than the O(α3

s) contribution of dd̄ → tt̄ . Anyway it’s very important
to remember that blue band doesn’t account for all the theoretical uncertainties, we didn’t include
any of the O(α4

s) terms in N and O(α3
s) in D. The inclusion of both of them could increase as well

as decrease the value of the theoretical prediction.
The same analysis has been repeated also with the two different cuts: Mtt̄ > 450 GeV and |∆y| > 1.
The cross section values with these cuts at LO are:

σ(pb) µ = mt/2 µ = mt µ = 2mt

pp̄(Mtt̄ > 450 GeV) 3.113 2.148 1.573

pp̄(|∆y| > 1) 1.846 1.276 0.937

Table 2: Cross sections with cuts O(α2
s)

The different terms of N described in the case without cuts have been calculated also for Mtt̄ >
450 GeV and |∆y| > 1. The contributions of the different orders and subprocesses are listed in

8

Compare with

AFB(%) Att̄
FB App̄

FB

data 15.8± 7.4 15.0± 5.5

MCFM 5.8± 0.9 3.8± 0.6

5

Finally we see, thanks to the relations (14), that the O(α2
sα) of QED for qq̄ → tt̄ +X is equal to

the O(α3
s) times RQED(Qq)

RQED(Qq) =
αÑQED

1

αsN1
=

F tt̄
QED

F tt̄
QCD

= QqQt
36

5

α

αs
(15)

The pure weak contribution to the O(α2
sα) is depicted by the same diagrams of qq̄ → tt̄ and qq̄ → tt̄g

in the QED case, but with the photon substituted by Z. We aren’t able anymore to express their
contributions through the QCD result and a simple Rweak factor, indeed now the replacement of a
gluon with a Z introduces the mass of Z in the propagators. We could neglect the mass of Z for

the qq̄ → tt̄g case because the ratio of m2
Z and the threshold is very small ( m2

Z

4m2
t
= 0.06), but in

the boxes amplitude the virtuality of Z is not constrained, so the loop integral is different from the
QED case. We can only repeat the calculation following the phase space slicing method exposed
for the O(α3

s) case.
It’s worth noting that also qq̄ → tt̄Z could contribute to this order, but here this process is ignored
because its value is very tiny (10−5 in AFB) due to the effect of mZ in the phase space integration.
The same argument applies to ud̄ → tt̄W+ and Higgs radiation.
We could expect that also one loop weak corrections to the qq̄g vertex (iΛµ) give rise to contribution
to AFB , but they don’t. Looking at the terms that can appear in iΛµ:

iΛµ = −igst
A α

4π

[

γµFV + γµγ5GA +
(pq̄ − pq)µ

2mq
FM + (pq̄ + pq)µγ5GE

]

(16)

we can see that, in the interference with Born amplitude, terms proportional to GE and GA vanish
and obviously γµFV doesn’t contribute to AFB, otherwise also O(α2

s) would be relevant. In [9] we
see that also the term proportional to FM vanishes in the AFB calculation.

3 Numerical results

All the numerical results have been calculated with the help of Feynarts [10] and Formcalc[11] and
using the phase space slicing method . The values of the physical input parameter are:

α−1 = 137.035 mt = 172.0 GeV mZ = 91.1875 GeV mW = 80.399 GeV (17)

We chose MRST2004QED parton distributions for NLO calculations and MRST2001LO for LO,
but the values of αs(µ) given by the two distributions is different for fixed µ, so we used αs(µ) of
MRST2004QED also for the evaluation of the cross sections at LO [5]. The same value (µ) was
used also for the factorization scale, and numerical results are presented with three different scale
(µ = mt/2,mt, 2mt). In Tab. 1 there are the results obtained for the cross sections, that is the
denominator of AFB. The different terms in the numerator of Att̄

FB and App̄
FB are listed7 in Tab. 3

and the correspondent contributions to the asymmetry in Tab. 4.
The QED part of the O(α2

sα) was easily obtained from O(α3
s) thanks to (15), and the values

used for µ = (mt/2,mt, 2mt) are

Ruū
QED = (0.192, 0.214, 0.237) Rdd̄

QED = (−0.096,−0.107,−0.119) (18)

7All the calculations have been done using
√
s = 1.96 TeV in the hadronic collisions. Using 2 TeV the changes

are negligible in Tab. 4, but not in Tab. 1 and Tab. 3
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Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:
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(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.
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Input
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(a) Att̄
FB

Att̄
FB µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 7.01% 6.29% 5.71%

O(α3
s) dd̄ 1.16% 1.03% 0.92%

O(α2
sα)QED uū 1.35% 1.35% 1.35%

O(α2
sα)QED dd̄ -0.11% -0.11% -0.11%

O(α2
sα)weak uū 0.16% 0.16% 0.16%

O(α2
sα)weak dd̄ -0.04% -0.04% -0.04%

O(α2) uū 0.18% 0.23% 0.28%

O(α2) dd̄ 0.02% 0.03% 0.03%

tot pp̄ 9.72% 8.93% 8.31%

(b) App̄
FB

App̄
FB µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 4.66% 4.19% 3.78%

O(α3
s) dd̄ 0.75% 0.66% 0.59%

O(α2
sα)QED uū 0.90% 0.90% 0.90%

O(α2
sα)QED dd̄ -0.07% -0.07% -0.07%

O(α2
sα)weak uū 0.10% 0.10% 0.10%

O(α2
sα)weak dd̄ -0.03% -0.03% -0.03%

O(α2) uū 0.11% 0.14% 0.17%

O(α2) dd̄ 0.01% 0.02% 0.02%

tot pp̄ 6.42% 5.92% 5.43%

Table 4: Different contributions to Att̄
FB and App̄

FB

0

0.05

0.1

0.2

0.25

0.3

0.35

mt!2!Μ!2mt
"theory#

#2Σ

#Σ

(a) Att̄
FB

0

0.05

0.1

0.2

0.25

0.3

0.35

mt!2!Μ!2mt
"theory#

#2Σ

#Σ

(b) App̄
FB

Figure 7: Theory(blue) and experimental data (black=central value, orange=1σ, yellow=2σ)
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Finally we see, thanks to the relations (14), that the O(α2
sα) of QED for qq̄ → tt̄ +X is equal to

the O(α3
s) times RQED(Qq)

RQED(Qq) =
αÑQED

1

αsN1
=

F tt̄
QED

F tt̄
QCD

= QqQt
36

5

α

αs
(15)

The pure weak contribution to the O(α2
sα) is depicted by the same diagrams of qq̄ → tt̄ and qq̄ → tt̄g

in the QED case, but with the photon substituted by Z. We aren’t able anymore to express their
contributions through the QCD result and a simple Rweak factor, indeed now the replacement of a
gluon with a Z introduces the mass of Z in the propagators. We could neglect the mass of Z for

the qq̄ → tt̄g case because the ratio of m2
Z and the threshold is very small ( m2

Z

4m2
t
= 0.06), but in

the boxes amplitude the virtuality of Z is not constrained, so the loop integral is different from the
QED case. We can only repeat the calculation following the phase space slicing method exposed
for the O(α3

s) case.
It’s worth noting that also qq̄ → tt̄Z could contribute to this order, but here this process is ignored
because its value is very tiny (10−5 in AFB) due to the effect of mZ in the phase space integration.
The same argument applies to ud̄ → tt̄W+ and Higgs radiation.
We could expect that also one loop weak corrections to the qq̄g vertex (iΛµ) give rise to contribution
to AFB , but they don’t. Looking at the terms that can appear in iΛµ:

iΛµ = −igst
A α

4π

[

γµFV + γµγ5GA +
(pq̄ − pq)µ

2mq
FM + (pq̄ + pq)µγ5GE

]

(16)

we can see that, in the interference with Born amplitude, terms proportional to GE and GA vanish
and obviously γµFV doesn’t contribute to AFB, otherwise also O(α2

s) would be relevant. In [9] we
see that also the term proportional to FM vanishes in the AFB calculation.

3 Numerical results

All the numerical results have been calculated with the help of Feynarts [10] and Formcalc[11] and
using the phase space slicing method . The values of the physical input parameter are:

α−1 = 137.035 mt = 172.0 GeV mZ = 91.1875 GeV mW = 80.399 GeV (17)

We chose MRST2004QED parton distributions for NLO calculations and MRST2001LO for LO,
but the values of αs(µ) given by the two distributions is different for fixed µ, so we used αs(µ) of
MRST2004QED also for the evaluation of the cross sections at LO [5]. The same value (µ) was
used also for the factorization scale, and numerical results are presented with three different scale
(µ = mt/2,mt, 2mt). In Tab. 1 there are the results obtained for the cross sections, that is the
denominator of AFB. The different terms in the numerator of Att̄

FB and App̄
FB are listed7 in Tab. 3

and the correspondent contributions to the asymmetry in Tab. 4.
The QED part of the O(α2

sα) was easily obtained from O(α3
s) thanks to (15), and the values

used for µ = (mt/2,mt, 2mt) are

Ruū
QED = (0.192, 0.214, 0.237) Rdd̄

QED = (−0.096,−0.107,−0.119) (18)

7All the calculations have been done using
√
s = 1.96 TeV in the hadronic collisions. Using 2 TeV the changes

are negligible in Tab. 4, but not in Tab. 1 and Tab. 3
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The QED part of the O(α2

sα) was easily obtained from O(α3
s) thanks to (15), and the values

used for µ = (mt/2,mt, 2mt) are

Ruū
QED = (0.192, 0.214, 0.237) Rdd̄

QED = (−0.096,−0.107,−0.119) (18)

7All the calculations have been done using
√
s = 1.96 TeV in the hadronic collisions. Using 2 TeV the changes

are negligible in Tab. 4, but not in Tab. 1 and Tab. 3
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a) at 1σ 
b)inside 2σ

RQED +RWeak =
αÑ1

αsN1

= 0.09 (7)

Rtt̄
EW (Mtt̄ > 450 GeV) = (8)

(0.200, 0.232, 0.266) (9)

RQED(Qq) =
αÑQED

1

αsN1

= QqQt
36

5

α

αs
(10)

RQED(Qq) = QqQt
36

5

α

αs
(11)

σ(pb) µ = mt/2 µ = mt µ = 2mt

pp̄ (No cuts) 7.990 5.621 4.187

pp̄(Mtt̄ > 450 GeV) 3.113 2.148 1.573

pp̄(|∆y| > 1) 1.846 1.276 0.937

Table 1: Cross sections with cuts O(α2
s)

(a) Att̄
FB

Att̄
FB µ = mt/2 µ = mt µ = 2mt

O(αs) uū 7.01% 6.29% 5.71%

O(αs) dd̄ 1.16% 1.03% 0.92%

O(α)QED uū 1.35% 1.35% 1.35%

O(α)QED dd̄ -0.11% -0.11% -0.11%

O(α)weak uū 0.16% 0.16% 0.16%

O(α)weak dd̄ -0.04% -0.04% -0.04%

O(α2/α2
s) uū 0.18% 0.23% 0.28%

O(α2/α2
s) dd̄ 0.02% 0.03% 0.03%

tot pp̄ 9.72% 8.93% 8.31%

(b) App̄
FB

App̄
FB µ = mt/2 µ = mt µ = 2mt

O(αs) uū 4.66% 4.19% 3.78%

O(αs) dd̄ 0.75% 0.66% 0.59%

O(α)QED uū 0.90% 0.90% 0.90%

O(α)QED dd̄ -0.07% -0.07% -0.07%

O(α)weak uū 0.10% 0.10% 0.10%

O(α)weak dd̄ -0.03% -0.03% -0.03%

O(α2/α2
s) uū 0.11% 0.14% 0.17%

O(α2/α2
s) dd̄ 0.01% 0.02% 0.02%

tot pp̄ 6.42% 5.92% 5.43%

Table 2: Different contributions to Att̄
FB and App̄

FB

3

(Att̄
FB)

EW

(Att̄
FB)

QCD
= (0.190, 0.220, 0.254)

(App̄
FB)

EW

(App̄
FB)

QCD
= (0.186, 0.218, 0.243) (1)

AEW
FB = 0.09×AQCD
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AEW
FB ∼ 0.25×AQCD

FB (3)
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Figure 2: Real emissions of gluon: photon in the propagator
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Also with cuts the gap between theory and experiment is decreased by EW 
terms. Anyway, if invariant mass > 450 GeV, theory at 3σ.

(a) Att̄
FB(Mtt̄ > 450 GeV)

Att̄
FB µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 10.13% 9.10% 8.27%

O(α3
s) dd̄ 1.44% 1.27% 1.14%

O(α2
sα)QED uū 1.94% 1.95% 1.96%

O(α2
sα)QED dd̄ -0.14% -0.14% -0.14%

O(α2
sα)weak uū 0.28% 0.28% 0.28%

O(α2
sα)weak dd̄ -0.05% -0.05% -0.05%

O(α2) uū 0.26% 0.33% 0.41%

O(α2) dd̄ 0.03% 0.03% 0.04%

tot pp̄ 13.90% 12.77% 11.91%

(b) Att̄
FB(|∆y| > 1)

App̄
FB

µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 15.11% 13.72% 12.41%

O(α3
s) dd̄ 2.28% 2.02% 1.84%

O(α2
sα)QED uū 2.90% 2.94% 2.94%

O(α2
sα)QED dd̄ -0.22% -0.22% -0.22%

O(α2
sα)weak uū 0.25% 0.25% 0.26%

O(α2
sα)weak dd̄ -0.09% -0.09% -0.08%

O(α2) uū 0.35% 0.45% 0.55%

O(α2) dd̄ 0.04% 0.05% 0.06%

tot pp̄ 20.70% 19.12% 17.75%

Table 5: Different contributions to Att̄
FB(Mtt̄ > 450 GeV) and Att̄

FB(|∆y| > 1)
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Figure 8: Theory(blue) and experimental data (black=central value, orange=1σ, yellow=2σ)
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Tab. 5 and the total values are:

Att̄
FB(Mtt̄ > 450 GeV) = (13.9, 12.8, 11.9)% Att̄

FB(|∆y| > 1) = (20.7, 19.1, 17.5)% (21)

As can be seen from the comparison of Tab. 5 and 3(a), the ratio between the QCD contribution
of uū → tt̄ and dd̄ → tt̄ processes is larger with Mtt̄ > 450 GeV cuts. The effect is an increase of
Rtt̄

EW , because Ruū
QED > Rdd̄

QED. With the other kind of cuts (|∆y| > 1) the effect is conversely the
opposite:

Rtt̄
EW (Mtt̄ > 450 GeV) = (0.200, 0.232, 0.266) Rtt̄

EW (|∆y| > 1) = (0.191, 0.216, 0.246) (22)

If we look at Fig. 8, we see that the theoretical prediction is inside 2σ for |∆y| > 1 but at 3σ
for Mtt̄ > 450 GeV. The NNLO of QCD and high order correction of SM could be the missing
ingredient to get the compatibility between theory and experiment, but BSM contributions cannot
be excluded. The dependence of AFB on the invariant mass of tt̄ seems to suggest the presence of
new physics below the TeV scale, but EW radiative corrections are essential to verify if we really
need new particles and interactions. Anyway the values of the new masses and the couplings cannot
be extracted neglecting the radiative corrections of the SM.

(a) Att̄
FB

N(pb) µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 0.560 0.354 0.234

O(α3
s) dd̄ 9.25× 10−2 5.76× 10−2 3.76× 10−2

O(α2
sα)QED uū 0.108 0.0759 0.0554

O(α2
sα)QED dd̄ −8.9× 10−3 −6.2× 10−3 −4.5× 10−3

O(α2
sα)weak uū 1.25× 10−2 0.89× 10−2 0.66× 10−2

O(α2
sα)weak dd̄ −3.6× 10−3 −2.5× 10−3 −1.8× 10−3

O(α2) uū 1.47× 10−2 1.30× 10−2 1.17× 10−2

O(α2) dd̄ 1.8× 10−3 1.6× 10−3 1.4× 10−3

(b) App̄
FB

N(pb) µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 0.373 0.236 0.155

O(α3
s) dd̄ 5.97× 10−2 3.72× 10−2 2.42 × 10−2

O(α2
sα)QED uū 7.15× 10−2 5.06× 10−2 3.67 × 10−2

O(α2
sα)QED dd̄ −5.7× 10−3 −4.0× 10−3 −2.9× 10−3

O(α2
sα)weak uū 8.2× 10−3 5.8× 10−3 4.2× 10−3

O(α2
sα)weak dd̄ −2.3× 10−3 −1.6× 10−3 −1.1× 10−3

O(α2) uū 9.1× 10−3 8.0× 10−3 7.1× 10−3

O(α2) dd̄ 1.1× 10−3 1.0× 10−3 0.9× 10−3

Table 3: Different contributions to N of Att̄
FB and App̄

FB

9

20

Finally, we look at App̄ as a function of the b-tag mul-

tiplicity. We observed in Sec. VII that the inclusive App̄

is zero in the double b-tagged events. In Table XVII, we

see that this pattern persists at high mass, although the

statistical precision is poor. Appealing again to pseudo-

experiments with Poisson fluctuations, we find that a ra-

tio of double to single tag App̄ as small as that in the data

occurs in 6% of all pseudo-experiments with mc@nlo.
We conclude that the low value of App̄ in the double b-
tagged sample is consistent with a statistical fluctuation.

IX. CONCLUSIONS

We have studied the forward-backward asymmetry of

top quark pairs produced in 1.96 TeV pp̄ collisions at

the Fermilab Tevatron. In a sample of 1260 events in

the lepton+jet decay topology, we measure the parton-

level inclusive asymmetry in both the laboratory and tt̄
rest frame, and rapidity-dependent, and Mtt̄-dependent

asymmetries in the tt̄ rest frame. We compare to NLO

predictions for the small charge asymmetry of QCD.

The laboratory frame measurement uses the rapidity

of the hadronically decaying top system and combines

the two lepton charge samples under the assumption of

CP conservation. This distribution shows a parton-level

forward backward asymmetry in the laboratory frame of

App̄ = 0.150 ± 0.055 (stat+sys). This has less than 1%

probability of representing a fluctuation from zero, and

is two standard deviations above the predicted asymme-

try from NLO QCD. We also study the frame-invariant

difference of the rapidities, ∆y = yt − yt̄, which is pro-

portional to the top quark rapidity in the tt̄ rest frame.

Asymmetries in ∆y are identical to those in the t pro-

duction angle in the tt̄ rest frame. We find a parton-level

asymmetry of Att̄ = 0.158 ± 0.075 (stat+sys), which is

somewhat higher than, but not inconsistent with, the

NLO QCD expectation of 0.058± 0.009.
In the tt̄ rest frame we measure fully corrected asym-

metries at small and large ∆y

Att̄(|∆y| < 1.0) = 0.026± 0.118
Att̄(|∆y| ≥ 1.0) = 0.611± 0.256

to be compared with mcfm predictions of 0.039 ± 0.006
and 0.123± 0.008 for these ∆y regions respectively.

In the tt̄ rest frame the asymmetry is a rising function

of the tt̄ invariant mass Mtt̄, with parton level asymme-

tries

Att̄(Mtt̄ < 450 GeV/c2) = −0.116± 0.153
Att̄(Mtt̄ ≥ 450 GeV/c2) = 0.475± 0.114

to be compared with mcfm predictions of 0.040 ± 0.006
and 0.088±0.013 for these Mtt̄ regions respectively. The

asymmetry at high mass is 3.4 standard deviations above

the NLO prediction for the charge asymmetry of QCD,

however we are aware that the accuracy of these theo-

retical predictions are under study. The separate results

at high mass and large ∆y contain partially independent

information on the asymmetry mechanism.

The asymmetries reverse sign under interchange of lep-

ton charge in a manner consistent with CP conservation.

The tt̄ frame asymmetry for Mtt̄ ≥ 450 GeV/c2 is found

to be robust against variations in tt̄ reconstruction qual-

ity and secondary vertex b-tagging. When the high-mass

data is divided by the lepton flavor, the asymmetries

are larger in muonic events, but statistically compatible

across species. Simple studies of the jet multiplicity and

frame dependence of the asymmetry at high mass may

offer the possibility of discriminating between the NLO

QCD effect and other models for the asymmetry, but the

statistical power of these comparisons is currently insuf-

ficient for any conclusion.

The measurements presented here suggest that the

modest inclusive tt̄ production asymmetry originates

from a significant effect at large rapidity difference ∆y
and total invariant mass Mtt̄. The predominantly qq̄
collisions of the Fermilab Tevatron are an ideal environ-

ment for further examination of this effect, and additional

studies are in progress.
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X. APPENDIX: THE COLOR-OCTET MODELS

In the generic color-octet model of Ref. [8], the gluon-

octet interference produces an asymmetric cos(θ∗) term

in the production cross section. The couplings of the

top and the light quarks to the massive gluon have op-

posite sign, giving a positive asymmetry as seen in the

data. This was implemented in the madgraph frame-

work, and the couplings and MG were tuned to reason-

ably reproduce the asymmetries and Mtt̄ distribution of

the data [26]. The sample called OctetA, with couplings

gV = 0, gA(q) = 3/2, gA(t) = −3/2, and mass MG = 2.0
TeV/c2, has parton level asymmetries of App̄ = 0.110 and



Total electroweak contribution is not negligible and increases QCD 
asymmetry by a factor ~ 1.2

CONCLUSION
A very important term is still missing: NNLO  QCD differential 
cross section.

The QED part can be simply calculated from QCD contribution of 
the subprocesses

EW cannot explain AFB(MINV>450 GeV), but new models cannot forget its 
contribution when they try to fill the gap between theory (SM) and experiment. 
Moreover we have to wait the NLO of QCD also for this region. 

THANK YOU FOR THE ATTENTION!



RQED +RWeak =
αÑ1

αsN1

= 0.09 (7)

Rtt̄
EW (Mtt̄ > 450 GeV) = (8)

(0.200, 0.232, 0.266) (9)

RQED(Qq) =
αÑQED

1

αsN1

= QqQt
36

5

α

αs
(10)

RQED(Qq) = QqQt
36

5

α

αs
(11)

σ(pb) µ = mt/2 µ = mt µ = 2mt

pp̄ (No cuts) 7.990 5.621 4.187

pp̄(Mtt̄ > 450 GeV) 3.113 2.148 1.573

pp̄(|∆y| > 1) 1.846 1.276 0.937

Table 1: Cross sections with cuts O(α2
s)

(a) Att̄
FB

Att̄
FB µ = mt/2 µ = mt µ = 2mt

O(αs) uū 7.01% 6.29% 5.71%

O(αs) dd̄ 1.16% 1.03% 0.92%

O(α)QED uū 1.35% 1.35% 1.35%

O(α)QED dd̄ -0.11% -0.11% -0.11%

O(α)weak uū 0.16% 0.16% 0.16%

O(α)weak dd̄ -0.04% -0.04% -0.04%

O(α2/α2
s) uū 0.18% 0.23% 0.28%

O(α2/α2
s) dd̄ 0.02% 0.03% 0.03%

tot pp̄ 9.72% 8.93% 8.31%

(b) App̄
FB

App̄
FB µ = mt/2 µ = mt µ = 2mt

O(αs) uū 4.66% 4.19% 3.78%

O(αs) dd̄ 0.75% 0.66% 0.59%

O(α)QED uū 0.90% 0.90% 0.90%

O(α)QED dd̄ -0.07% -0.07% -0.07%

O(α)weak uū 0.10% 0.10% 0.10%

O(α)weak dd̄ -0.03% -0.03% -0.03%

O(α2/α2
s) uū 0.11% 0.14% 0.17%

O(α2/α2
s) dd̄ 0.01% 0.02% 0.02%

tot pp̄ 6.42% 5.92% 5.43%

Table 2: Different contributions to Att̄
FB and App̄

FB

3

Finally we see, thanks to the relations (14), that the O(α2
sα) of QED for qq̄ → tt̄ +X is equal to

the O(α3
s) times RQED(Qq)

RQED(Qq) =
αÑQED

1

αsN1
=

F tt̄
QED

F tt̄
QCD

= QqQt
36

5

α

αs
(15)

The pure weak contribution to the O(α2
sα) is depicted by the same diagrams of qq̄ → tt̄ and qq̄ → tt̄g

in the QED case, but with the photon substituted by Z. We aren’t able anymore to express their
contributions through the QCD result and a simple Rweak factor, indeed now the replacement of a
gluon with a Z introduces the mass of Z in the propagators. We could neglect the mass of Z for

the qq̄ → tt̄g case because the ratio of m2
Z and the threshold is very small ( m2

Z

4m2
t
= 0.06), but in

the boxes amplitude the virtuality of Z is not constrained, so the loop integral is different from the
QED case. We can only repeat the calculation following the phase space slicing method exposed
for the O(α3

s) case.
It’s worth noting that also qq̄ → tt̄Z could contribute to this order, but here this process is ignored
because its value is very tiny (10−5 in AFB) due to the effect of mZ in the phase space integration.
The same argument applies to ud̄ → tt̄W+ and Higgs radiation.
We could expect that also one loop weak corrections to the qq̄g vertex (iΛµ) give rise to contribution
to AFB , but they don’t. Looking at the terms that can appear in iΛµ:

iΛµ = −igst
A α

4π

[

γµFV + γµγ5GA +
(pq̄ − pq)µ

2mq
FM + (pq̄ + pq)µγ5GE

]

(16)

we can see that, in the interference with Born amplitude, terms proportional to GE and GA vanish
and obviously γµFV doesn’t contribute to AFB, otherwise also O(α2

s) would be relevant. In [9] we
see that also the term proportional to FM vanishes in the AFB calculation.

3 Numerical results

All the numerical results have been calculated with the help of Feynarts [10] and Formcalc[11] and
using the phase space slicing method . The values of the physical input parameter are:

α−1 = 137.035 mt = 172.0 GeV mZ = 91.1875 GeV mW = 80.399 GeV (17)

We chose MRST2004QED parton distributions for NLO calculations and MRST2001LO for LO,
but the values of αs(µ) given by the two distributions is different for fixed µ, so we used αs(µ) of
MRST2004QED also for the evaluation of the cross sections at LO [5]. The same value (µ) was
used also for the factorization scale, and numerical results are presented with three different scale
(µ = mt/2,mt, 2mt). In Tab. 1 there are the results obtained for the cross sections, that is the
denominator of AFB. The different terms in the numerator of Att̄

FB and App̄
FB are listed7 in Tab. 3

and the correspondent contributions to the asymmetry in Tab. 4.
The QED part of the O(α2

sα) was easily obtained from O(α3
s) thanks to (15), and the values

used for µ = (mt/2,mt, 2mt) are

Ruū
QED = (0.192, 0.214, 0.237) Rdd̄

QED = (−0.096,−0.107,−0.119) (18)

7All the calculations have been done using
√
s = 1.96 TeV in the hadronic collisions. Using 2 TeV the changes

are negligible in Tab. 4, but not in Tab. 1 and Tab. 3
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used also for the factorization scale, and numerical results are presented with three different scale
(µ = mt/2,mt, 2mt). In Tab. 1 there are the results obtained for the cross sections, that is the
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(a) Att̄
FB(Mtt̄ > 450 GeV)

Att̄
FB µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 10.13% 9.10% 8.27%

O(α3
s) dd̄ 1.44% 1.27% 1.14%

O(α2
sα)QED uū 1.94% 1.95% 1.96%

O(α2
sα)QED dd̄ -0.14% -0.14% -0.14%

O(α2
sα)weak uū 0.28% 0.28% 0.28%

O(α2
sα)weak dd̄ -0.05% -0.05% -0.05%

O(α2) uū 0.26% 0.33% 0.41%

O(α2) dd̄ 0.03% 0.03% 0.04%

tot pp̄ 13.90% 12.77% 11.91%

(b) Att̄
FB(|∆y| > 1)

App̄
FB

µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 15.11% 13.72% 12.41%

O(α3
s) dd̄ 2.28% 2.02% 1.84%

O(α2
sα)QED uū 2.90% 2.94% 2.94%

O(α2
sα)QED dd̄ -0.22% -0.22% -0.22%

O(α2
sα)weak uū 0.25% 0.25% 0.26%

O(α2
sα)weak dd̄ -0.09% -0.09% -0.08%

O(α2) uū 0.35% 0.45% 0.55%

O(α2) dd̄ 0.04% 0.05% 0.06%
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Figure 8: Theory(blue) and experimental data (black=central value, orange=1σ, yellow=2σ)
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Finally, we look at App̄ as a function of the b-tag mul-

tiplicity. We observed in Sec. VII that the inclusive App̄

is zero in the double b-tagged events. In Table XVII, we

see that this pattern persists at high mass, although the

statistical precision is poor. Appealing again to pseudo-

experiments with Poisson fluctuations, we find that a ra-

tio of double to single tag App̄ as small as that in the data

occurs in 6% of all pseudo-experiments with mc@nlo.
We conclude that the low value of App̄ in the double b-
tagged sample is consistent with a statistical fluctuation.

IX. CONCLUSIONS

We have studied the forward-backward asymmetry of

top quark pairs produced in 1.96 TeV pp̄ collisions at

the Fermilab Tevatron. In a sample of 1260 events in

the lepton+jet decay topology, we measure the parton-

level inclusive asymmetry in both the laboratory and tt̄
rest frame, and rapidity-dependent, and Mtt̄-dependent

asymmetries in the tt̄ rest frame. We compare to NLO

predictions for the small charge asymmetry of QCD.

The laboratory frame measurement uses the rapidity

of the hadronically decaying top system and combines

the two lepton charge samples under the assumption of

CP conservation. This distribution shows a parton-level

forward backward asymmetry in the laboratory frame of

App̄ = 0.150 ± 0.055 (stat+sys). This has less than 1%

probability of representing a fluctuation from zero, and

is two standard deviations above the predicted asymme-

try from NLO QCD. We also study the frame-invariant

difference of the rapidities, ∆y = yt − yt̄, which is pro-

portional to the top quark rapidity in the tt̄ rest frame.

Asymmetries in ∆y are identical to those in the t pro-

duction angle in the tt̄ rest frame. We find a parton-level

asymmetry of Att̄ = 0.158 ± 0.075 (stat+sys), which is

somewhat higher than, but not inconsistent with, the

NLO QCD expectation of 0.058± 0.009.
In the tt̄ rest frame we measure fully corrected asym-

metries at small and large ∆y

Att̄(|∆y| < 1.0) = 0.026± 0.118
Att̄(|∆y| ≥ 1.0) = 0.611± 0.256

to be compared with mcfm predictions of 0.039 ± 0.006
and 0.123± 0.008 for these ∆y regions respectively.

In the tt̄ rest frame the asymmetry is a rising function

of the tt̄ invariant mass Mtt̄, with parton level asymme-

tries

Att̄(Mtt̄ < 450 GeV/c2) = −0.116± 0.153
Att̄(Mtt̄ ≥ 450 GeV/c2) = 0.475± 0.114

to be compared with mcfm predictions of 0.040 ± 0.006
and 0.088±0.013 for these Mtt̄ regions respectively. The

asymmetry at high mass is 3.4 standard deviations above

the NLO prediction for the charge asymmetry of QCD,

however we are aware that the accuracy of these theo-

retical predictions are under study. The separate results

at high mass and large ∆y contain partially independent

information on the asymmetry mechanism.

The asymmetries reverse sign under interchange of lep-

ton charge in a manner consistent with CP conservation.

The tt̄ frame asymmetry for Mtt̄ ≥ 450 GeV/c2 is found

to be robust against variations in tt̄ reconstruction qual-

ity and secondary vertex b-tagging. When the high-mass

data is divided by the lepton flavor, the asymmetries

are larger in muonic events, but statistically compatible

across species. Simple studies of the jet multiplicity and

frame dependence of the asymmetry at high mass may

offer the possibility of discriminating between the NLO

QCD effect and other models for the asymmetry, but the

statistical power of these comparisons is currently insuf-

ficient for any conclusion.

The measurements presented here suggest that the

modest inclusive tt̄ production asymmetry originates

from a significant effect at large rapidity difference ∆y
and total invariant mass Mtt̄. The predominantly qq̄
collisions of the Fermilab Tevatron are an ideal environ-

ment for further examination of this effect, and additional

studies are in progress.
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X. APPENDIX: THE COLOR-OCTET MODELS

In the generic color-octet model of Ref. [8], the gluon-

octet interference produces an asymmetric cos(θ∗) term

in the production cross section. The couplings of the

top and the light quarks to the massive gluon have op-

posite sign, giving a positive asymmetry as seen in the

data. This was implemented in the madgraph frame-

work, and the couplings and MG were tuned to reason-

ably reproduce the asymmetries and Mtt̄ distribution of

the data [26]. The sample called OctetA, with couplings

gV = 0, gA(q) = 3/2, gA(t) = −3/2, and mass MG = 2.0
TeV/c2, has parton level asymmetries of App̄ = 0.110 and
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in the production cross section. The couplings of the
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(a) Att̄
FB(Mtt̄ > 450 GeV)

Att̄
FB µ = mt/2 µ = mt µ = 2mt

O(α3
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Figure 8: Theory(blue) and experimental data (black=central value, orange=1σ, yellow=2σ)
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∆y = yt − yt̄ (2)

fp1,H1(x1)fp2,H2(x2) (3)

fp1,H2(x1)fp2,H1(x2) (4)

H1H2 → tt̄+X (5)

O(αsα) = 0 (6)

RQED +RWeak =
αÑ1

αsN1
= 0.09 (7)

RQED(Qq) =
αÑQED

1

αsN1
= QqQt

36

5

α

αs

(8)

σ(pb) µ = mt/2 µ = mt µ = 2mt

pp̄ (No cuts) 7.990 5.621 4.187

pp̄(Mtt̄ > 450 GeV) 3.113 2.148 1.573

pp̄(|∆y| > 1) 1.846 1.276 0.937

Table 1: Cross sections with cuts O(α2
s
)

1

LO Cross-Section

In this work we reevaluated all the contributions that are presented in in the last term of (8).
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Figure 1: Born diagrams

In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3


