The electroweak contribution to the top forward-backward asymmetry at Tevatron

Davide Pagani Max Planck Institut für Physik, München IMPRS Colloquium, 17-06-2011

OUTLINE

DEFINITIONS OF AFB

THEORETICAL PREDICTION OF STANDARD MODEL

NUMERICAL RESULTS, COMPARISON WITH EXPERIMENT

SUMMARY AND CONCLUSION

$$p\bar{p} \rightarrow t\bar{t} + X$$

$$A_{FB}^{t\bar{t}} = \frac{\sigma(\Delta y > 0) - \sigma(\Delta y < 0)}{\sigma(\Delta y > 0) + \sigma(\Delta y < 0)}$$

$$y_t = \frac{1}{2}\log\left(\frac{E + p_z}{E - p_z}\right)$$

$$A_{FB}^{p\bar{p}} = \frac{\sigma(y_t > 0) - \sigma(y_t < 0)}{\sigma(y_t > 0) + \sigma(y_t < 0)}$$

$$\Delta y = y_t - y_{\bar{t}}$$

Why is A_{FB} interesting?

Hadronic process = partonic process \otimes PDF

 $\sigma(H_1H_2 \to t\bar{t} + X) = \sigma(p_1p_2 \to t\bar{t} + X) \otimes \left[f_{p_1,H_1}(x_1)f_{p_2,H_2}(x_2) + f_{p_1,H_2}(x_1)f_{p_2,H_1}(x_2)\right]$

Hadronic process = partonic process \otimes PDF

 $\sigma(H_1H_2 \to t\bar{t} + X) = \sigma(p_1p_2 \to t\bar{t} + X) \otimes \left[f_{p_1,H_1}(x_1)f_{p_2,H_2}(x_2) + f_{p_1,H_2}(x_1)f_{p_2,H_1}(x_2)\right]$

Partonic process can be produced in two different directions

Hadronic process = partonic process \otimes PDF

 $\sigma(H_1H_2 \to t\bar{t} + X) = \sigma(p_1p_2 \to t\bar{t} + X) \otimes \left[f_{p_1,H_1}(x_1)f_{p_2,H_2}(x_2) + f_{p_1,H_2}(x_1)f_{p_2,H_1}(x_2)\right]$

Partonic process can be produced in two different directions

At LHC H₁=H₂ \rightarrow A_{FB}=0 At Tevatron only processes with p₁ or p₂ = (up, antiup, down, antidown) can produce asymmetric terms!

At LO partonic processes are not asymmetric. QCD produces the asymmetry only at NLO! NLO in the cross-section, LO in A_{FB}

QCD only at LO, but there is also electroweak theory.

$$\mathcal{O}(\alpha_s \alpha) = 0$$

$$A_{FB} = \frac{N}{D} = \frac{\alpha^2 \tilde{N}_0 + \alpha_s^3 N_1 + \alpha_s^2 \alpha \tilde{N}_1 + \alpha_s^4 N_2 + \dots}{\alpha^2 \tilde{D}_0 + \alpha_s^2 D_0 + \alpha_s^3 D_1 + \alpha_s^2 \alpha \tilde{D}_1 + \dots} = \alpha_s \frac{N_1}{D_0} + \alpha \frac{\tilde{N}_1}{D_0} + \frac{\alpha^2}{\alpha_s^2} \frac{\tilde{N}_0}{D_0}$$

 $\alpha_s^2 D_0$ is the LO cross section, now we see the terms in N

$$A_{FB} = \frac{N}{D} = \frac{\alpha^2 \tilde{N}_0 + \alpha_s^3 N_1 + \alpha_s^2 \alpha \tilde{N}_1 + \alpha_s^4 N_2 + \dots}{\alpha^2 \tilde{D}_0 + \alpha_s^2 D_0 + \alpha_s^3 D_1 + \alpha_s^2 \alpha \tilde{D}_1 + \dots} = \alpha_s \frac{N_1}{D_0} + \alpha \frac{\tilde{N}_1}{D_0} + \frac{\alpha^2}{\alpha_s^2} \frac{\tilde{N}_0}{D_0}$$

Different couplings for different chiralities produce asymmetric terms in the cross-section

$$\frac{d\sigma_{asym}}{d\cos\theta} = 2\pi\alpha^2 \cos\theta \left(1 - \frac{4m_t^2}{s}\right) \left[\kappa \frac{Q_q Q_t A_q A_t}{(s - M_Z^2)} + 2\kappa^2 A_q A_t V_q V_t \frac{s}{(s - M_Z^2)^2}\right]$$

$$A_{FB} = \frac{N}{D} = \frac{\alpha^2 \tilde{N}_0 + \alpha_s^3 N_1 + \alpha_s^2 \alpha \tilde{N}_1 + \alpha_s^4 N_2 + \dots}{\alpha^2 \tilde{D}_0 + \alpha_s^2 D_0 + \alpha_s^3 D_1 + \alpha_s^2 \alpha \tilde{D}_1 + \dots} = \alpha_s \frac{N_1}{D_0} + \alpha \frac{\tilde{N}_1}{D_0} + \frac{\alpha^2}{\alpha_s^2} \frac{\tilde{N}_0}{D_0}$$

Different couplings for different chiralities produce asymmetric terms in the cross-section

$$\frac{d\sigma_{asym}}{d\cos\theta} = 2\pi\alpha^2 \cos\theta \left(1 - \frac{4m_t^2}{s}\right) \left[\kappa \frac{Q_q Q_t A_q A_t}{(s - M_Z^2)} + 2\kappa^2 A_q A_t V_q V_t \frac{s}{(s - M_Z^2)^2}\right]$$

REAL Only interference of initial and final gluon emission is asymmetric.

Kuhn, Rodrigo - Phys.Rev. D59 (1999) 054017

REAL+VIRTUAL= IR finite

It's useful to divide electroweak contribution into QED (photon) and weak (Z) part.

QED can be easily obtained from QCD calculation and the substitution of one gluon into one photon in the squared amplitudes.

It's useful to divide electroweak contribution into QED (photon) and weak (Z) part.

QED can be easily obtained from QCD calculation and the substitution of one gluon into one photon in the squared amplitudes.

 $q\bar{q} \rightarrow ttq$

 $q\bar{q} \rightarrow tt\gamma$

 f_{g}^{t}

t q g q g

$$A_{FB} = \frac{N}{D} = \frac{\alpha^2 \tilde{N}_0 + \alpha_s^3 N_1 + \alpha_s^2 \alpha \tilde{N}_1 + \alpha_s^4 N_2 + \dots}{\alpha^2 \tilde{D}_0 + \alpha_s^2 D_0 + \alpha_s^3 D_1 + \alpha_s^2 \alpha \tilde{D}_1 + \dots} = \alpha_s \frac{N_1}{D_0} + \alpha \frac{\tilde{N}_1}{D_0} + \frac{\alpha^2}{\alpha_s^2} \frac{\tilde{N}_0}{D_0}$$

$$R_{QED}(Q_q) = \frac{\alpha \tilde{N}_1^{QED}}{\alpha_s N_1} = Q_q Q_t \frac{36}{5} \frac{\alpha}{\alpha_s}$$

QED correction can be obtained from QCD \times R_{QED}

Weak

The same diagrams as QED part, but $\gamma \rightarrow Z$.

Z is not massless \rightarrow If we write Weak=QCD × R_{Weak}. R_{Weak} does not depend only on couplings and color factor

$$A_{FB} = \frac{N}{D} = \frac{\alpha^2 \tilde{N}_0 + \alpha_s^3 N_1 + \alpha_s^2 \alpha \tilde{N}_1 + \alpha_s^4 N_2 + \dots}{\alpha^2 \tilde{D}_0 + \alpha_s^2 D_0 + \alpha_s^3 D_1 + \alpha_s^2 \alpha \tilde{D}_1 + \dots} = \alpha_s \frac{N_1}{D_0} + \alpha \frac{\tilde{N}_1}{D_0} + \frac{\alpha^2}{\alpha_s^2} \frac{\tilde{N}_0}{D_0}$$

$$R_{QED}(Q_q) = \frac{\alpha \tilde{N}_1^{QED}}{\alpha_s N_1} = Q_q Q_t \frac{36}{5} \frac{\alpha}{\alpha_s}$$

QED correction can be obtained from QCD \times R_{QED}

 $A_{FB}^{EW} = 0.09 \times A_{FB}^{QCD}$

Weak

The same diagrams as QED part, but $\gamma \rightarrow Z$.

Z is not massless \rightarrow If we write Weak=QCD × R_{Weak}. R_{Weak} does not depend only on couplings and color factor

EXISTING ESTIMATE

$$A_{FB} = \frac{N}{D} = \frac{\alpha^2 \tilde{N}_0 + \alpha_s^3 N_1 + \alpha_s^2 \alpha \tilde{N}_1 + \alpha_s^4 N_2 + \dots}{\alpha^2 \tilde{D}_0 + \alpha_s^2 D_0 + \alpha_s^3 D_1 + \alpha_s^2 \alpha \tilde{D}_1 + \dots} = \alpha_s \frac{N_1}{D_0} + \alpha \frac{\tilde{N}_1}{D_0} + \frac{\alpha^2}{\alpha_s^2} \frac{\tilde{N}_0}{D_0}$$

$$R_{QED}(Q_q) = \frac{\alpha \tilde{N}_1^{QED}}{\alpha_s N_1} = Q_q Q_t \frac{36}{5} \frac{\alpha}{\alpha_s}$$

QED correction can be obtained from QCD \times R_{QED}

Weak

The same diagrams as QED part, but
$$\gamma \rightarrow Z$$
.

Z is not massless \rightarrow If we write Weak=QCD × R_{Weak}. R_{Weak} does not depend only on couplings and color factor

EXISTING ESTIMATE
$$A_{FB}^{EW} = 0.09 \times A_{FB}^{QCD}$$
WE CALCULATED THE COMPLETE EW CONTRIBUTION $A_{FB}^{EW} \sim 0.25 \times A_{FB}^{QCD}$

THIS NUMBER DEPENDS ON THE RENORMALIZATION SCALE OF α_s

NUMERICAL RESULTS

$\alpha^{-1} = 137.035$ $m_t = 172.0 \text{ GeV}$	$m_Z = 91.1875 \text{ GeV}$ $m_W = 80.399 \text{ GeV}$	Input
$\alpha_{s}?$	$A_{FB} = \frac{N}{D} = \frac{\alpha^2 \tilde{N}_0 + \alpha_s^3 N_1 + \alpha_s^2 \alpha \tilde{N}_1 + \alpha_s^4 N_1}{\alpha^2 \tilde{D}_0 + \alpha_s^2 D_0 + \alpha_s^3 D_1 + \alpha_s^2 \alpha \tilde{L}}$	$\frac{N_2 + \cdots}{\tilde{D}_1 + \cdots} = \alpha_s \frac{N_1}{D_0} + \alpha \frac{\tilde{N}_1}{D_0} + \frac{\alpha^2}{\alpha_s^2} \frac{\tilde{N}_0}{D_0}$
α_{s} for LO $\neq \alpha_{s}$ for NLO	Expansion makes sense if α_s in α_s from MRST2004QEI	n N and D is the same. D $\rightarrow \alpha_s$ for NLO
Factorization scale μ_f renormalization scale μ_r	$\mu_{\rm f} = \mu_{\rm r} = (m_{\rm t}/2, r)$	$m_t, 2m_t$)

NUMERICAL RESULTS

$\alpha^{-1} = 137.035$ $m_t = 172.0 \text{ GeV}$	$m_Z = 91.1875$	GeV $m_W =$	$\approx 80.399~{ m GeV}$	Input
$\alpha_{\rm s}?$	$A_{FB} = \frac{N}{D} =$	$\frac{\alpha^2 \tilde{N}_0 + \alpha_s^3 N_1}{\alpha^2 \tilde{D}_0 + \alpha_s^2 D_0} + \alpha_s^2 N_0 + $	$+ \alpha_s^2 \alpha \tilde{N}_1 + \alpha_s^4 N_2 \\ + \alpha_s^3 D_1 + \alpha_s^2 \alpha \tilde{D}_1$	$\frac{2}{1} + \dots = \alpha_s \frac{N_1}{D_0} + \alpha \frac{\tilde{N}_1}{D_0} + \frac{\alpha^2}{\alpha_s^2} \frac{\tilde{N}_0}{D_0}$
α_s for LO $\neq \alpha_s$ for NLO	Expansio α _s	on makes se from MRS	ense if α _s in T2004QED	N and D is the same. $\rightarrow \alpha_s$ for NLO
Factorization scale μ_f renormalization scale μ_r		$\mu_{f} =$	$\mu_r = (m_t/2, m_t)$	$m_t, 2m_t$)
Output		$A_{FB}^{t\bar{t}} = (9.7,$	8.9, 8.3)%	$A_{FB}^{p\bar{p}} = (6.4, 5.9, 5.4)\%$
	С	omnare w		
			1011	
	$A_{FB}(\%)$	$A_{FB}^{t\bar{t}}$	$A^{p\bar{p}}_{FB}$	
	$A_{FB}(\%)$ data	$\frac{A_{FB}^{t\bar{t}}}{15.8 \pm 7.4}$	$A_{FB}^{p\bar{p}}$ 15.0 ± 5.5	

 $R_{QED}^{u\bar{u}} = (0.192, 0.214, 0.237)$ $R_{QED}^{d\bar{d}} = (-0.096, -0.107, -0.119)$

a) at 1σ b)inside 2σ

 $\frac{(A_{FB}^{t\bar{t}})^{EW}}{(A_{FB}^{t\bar{t}})^{QCD}} = (0.190, 0.220, 0.254) \qquad \frac{(A_{FB}^{p\bar{p}})^{EW}}{(A_{FB}^{p\bar{p}})^{QCD}} = (0.186, 0.218, 0.243)$

Also with cuts the gap between theory and experiment is decreased by EW terms. Anyway, if invariant mass > 450 GeV, theory at 3σ .

CONCLUSION

A very important term is still missing: NNLO QCD differential cross section.

Total electroweak contribution is not negligible and increases QCD asymmetry by a factor ~ 1.2

The QED part can be simply calculated from QCD contribution of the subprocesses

EW cannot explain $A_{FB}(M_{INV}>450 \text{ GeV})$, but new models cannot forget its contribution when they try to fill the gap between theory (SM) and experiment. Moreover we have to wait the NLO of QCD also for this region.

THANK YOU FOR THE ATTENTION!

EXTRA SLIDES

(a) $A_{FB}^{t\bar{t}}$

(b) $A_{FB}^{p\bar{p}}$

$A^{t\bar{t}}_{FB}$	$\mu = m_t/2$	$\mu = m_t$	$\mu = 2m_t$	$A^{p\bar{p}}_{FB}$	$\mu = m_t/2$	$\mu = m_t$	$\mu = 2m_t$
$\mathcal{O}(lpha_s)$ $uar{u}$	7.01%	6.29%	5.71%	$\mathcal{O}(lpha_s)$ $uar{u}$	4.66%	4.19%	3.78%
${\cal O}(lpha_s) ~~ d ar d$	1.16%	1.03%	0.92%	$\mathcal{O}(lpha_s) ~~ dar{d}$	0.75%	0.66%	0.59%
$\mathcal{O}(\alpha)_{QED}$ $u\bar{u}$	1.35%	1.35%	1.35%	$\mathcal{O}(\alpha)_{QED}$ $u\bar{u}$	0.90%	0.90%	0.90%
${\cal O}(lpha)_{QED} ~~ dar d$	-0.11%	-0.11%	-0.11%	${\cal O}(lpha)_{QED} ~~ dar d$	-0.07%	-0.07%	-0.07%
$\mathcal{O}(lpha)_{weak}$ $uar{u}$	0.16%	0.16%	0.16%	$\mathcal{O}(lpha)_{weak}$ $uar{u}$	0.10%	0.10%	0.10%
$\mathcal{O}(lpha)_{weak} ~~ dar{d}$	-0.04%	-0.04%	-0.04%	$\mathcal{O}(lpha)_{weak} ~~ dar{d}$	-0.03%	-0.03%	-0.03%
$\mathcal{O}(lpha^2/lpha_s^2)$ $uar{u}$	0.18%	0.23%	0.28%	$\mathcal{O}(\alpha^2/\alpha_s^2)$ $u\bar{u}$	0.11%	0.14%	0.17%
${\cal O}(lpha^2/lpha_s^2) ~~dar{d}$	0.02%	0.03%	0.03%	$\mathcal{O}(lpha^2/lpha_s^2) ~~dar{d}$	0.01%	0.02%	0.02%
tot $p\bar{p}$	9.72%	8.93%	8.31%	tot $p\bar{p}$	6.42%	5.92%	5.43%

$$R_{QED}^{u\bar{u}} = (0.192, 0.214, 0.237)$$
$$R_{QED}^{d\bar{d}} = (-0.096, -0.107, -0.119)$$

(a) $A_{FB}^{t\bar{t}}(M_{t\bar{t}} > 450 \text{ GeV})$

(b) $A_{FB}^{t\bar{t}}(|\Delta y| > 1)$

$A^{t\bar{t}}_{FB}$	$\mu = m_t/2$	$\mu = m_t$	$\mu = 2m_t$	$A_{FB}^{t\bar{t}}$	$\mu = m_t/2$	$\mu = m_t$	$\mu = 2m_t$
$\mathcal{O}(lpha_s^3)$ $uar{u}$	10.13%	9.10%	8.27%	${\cal O}(lpha_s^3)$ $uar u$	15.11%	13.72%	12.41%
${\cal O}(lpha_s^3) ~~ dar d$	1.44%	1.27%	1.14%	${\cal O}(lpha_s^3) ~~ dar d$	2.28%	2.02%	1.84%
$\mathcal{O}(\alpha_s^2 \alpha)_{QED} u \bar{u}$	1.94%	1.95%	1.96%	$\mathcal{O}(lpha_s^2 lpha)_{QED} u ar{u}$	2.90%	2.94%	2.94%
${\cal O}(lpha_s^2 lpha)_{QED} ~~dar{d}$	-0.14%	-0.14%	-0.14%	$\mathcal{O}(lpha_s^2 lpha)_{QED} \ \ d\bar{d}$	-0.22%	-0.22%	-0.22%
$\mathcal{O}(lpha_s^2 lpha)_{weak}$ $u ar{u}$	0.28%	0.28%	0.28%	${\cal O}(lpha_s^2 lpha)_{weak}$ $uar u$	0.25%	0.25%	0.26%
${\cal O}(lpha_s^2lpha)_{weak} ~~dar d$	-0.05%	-0.05%	-0.05%	${\cal O}(lpha_s^2 lpha)_{weak} ~~dar d$	-0.09%	-0.09%	-0.08%
$\mathcal{O}(lpha^2)$ $uar{u}$	0.26%	0.33%	0.41%	${\cal O}(lpha^2)$ $uar u$	0.35%	0.45%	0.55%
${\cal O}(lpha^2) ~~ dar d$	0.03%	0.03%	0.04%	$\mathcal{O}(lpha^2) dar{d}$	0.04%	0.05%	0.06%
tot $p\bar{p}$	13.90%	12.77%	11.91%	tot $par{p}$	20.70%	19.12%	17.75%

	$\sigma(\mathrm{pb})$	$\mu = m_t/2$	$\mu = m_t$	$\mu = 2m_t$
I O Cross-Section	$p\bar{p}$ (No cuts)	7.990	5.621	4.187
LO CIUSS-Section	$p\bar{p}(M_{t\bar{t}} > 450 \text{ GeV})$	3.113	2.148	1.573
	$p\bar{p}(\Delta y > 1)$	1.846	1.276	0.937

$$\kappa = \frac{1}{4\sin^2(\theta_W)\cos^2(\theta_W)} \qquad V_q = T_q^3 - 2Q_q \sin^2(\theta_W) \qquad A_q = T_q^3$$