New Methods for Limiting Black Hole Dark Matter

One of the simplest points in exptl. physics...

If there is something between you and a source,

(beam pipe at LHC, window of your detector. atmosphere in astronomy, cosmic rays...)

there will be a loss of angular resolution

If there are Black Holes in space there is 'something'

Einstein deflection of light:

 $\delta \alpha = 4GM/b = 2(r_s/b)$

 $r_s =$ Schwzld radius of Sun, Black Hole , b =Impact parameter of photon

SPECTACULAR resolution of EHT project 10 , microarcsec that is $\sim 10^{-11} rad$

(Using earth diameter as baseline, resolution wavelength/earth)

IDEA: Use high resolution observations to set limits on Black Holes along the flight paths

WHERE: Galaxy, CMB, 'Spike' around Super Massive Black Hole (M87),...

ARGUMENT

Rearrange Einstein formula and square:

$$\pi b^2 = 4\pi r_s^2 (1/\delta \alpha^2)$$

To every deflection $\delta \alpha$ there is a *crosssection*($\delta \alpha$)

 $Prob(\delta \alpha) = \\ crosssection(\delta \alpha) \times column \, density \, BlackHoles$

 $= 4\pi r_s^2 (1/\delta \alpha^2) \times column \, density$

When $Prob(\delta \alpha) \sim 1$, resolution $\delta \alpha$ not possible

OR

If resolution $\delta \alpha$ exists, then

 $column \, density \leq 1/(4\pi r_s^2(1/\delta\alpha^2) = (\delta\alpha)^2/(4\pi r_s^2)$

COLUMN DENSITIES of BLACK HOLES

Column density

= (Dark Matter column density)/M(Black Hole)

Galaxy: $3.0 \times (M_{\odot}/M)/ly^2$ for $10^4 ly$ flight path

CMB: $9.2 \times (M_{\odot}/M)/ly^2 \times 7.2 \times 10^9$ = $6.6 \times 10^{10} (M_{\odot}/M)/ly^2$

Factor 7.2 \times 10⁹ is due to GR, from higher density at early times and opening angle effect $\sim 1/a^5$

M87 Spike:

model: $\rho \sim r^{-3/2}$ $3 \times 10^4 / ly^2 (M_{\odot}/M)$

model: $\rho \sim r^{-7/3}$ $1 \times 10^8/ly^2 (M_{\odot}/M)$

For spike of mass $10^8 M_{\odot}$

SENSITIVITY

Assuming 10 microarcsec resolution

Galaxy: $(M/M_{\odot}) \le 6 \times 10^2$ for $10^4 ly$ flight path

CMB: $(M/M_{\odot}) \le 2.7 \times 10^{-8}$ note: really *primordial*

M87 Spike: the resolution exists— EHT!

model: $\rho \sim r^{-3/2}$ $(M/M_{\odot}) \le 7 \times 10^{-2}$ model: $\rho \sim r^{-7/3}$ $(M/M_{\odot}) \le 2 \times 10^{-5}$

For spike of mass $10^8 M_{\odot}$

When Black Holes a fraction of Dark Matter

Is often considered that primordial Black Holes are only a fraction, f_{PBH} of Dark Matter . Replace column density $\rightarrow f_{PBH} \times column$ density.

 $M_{\rm PBH} [g] = 10^{27}$ 10^{21} 10^{24} 10^{30} 10^{36} 10^{33} 10^{15} 10^{18} 10^{0} 10^{-1} $f_{\rm PBH} = \Omega_{\rm PBH}/\Omega_{\rm DM}$ Microlensing 10^{-2} Evaporation 10^{-3} -- $\rho \sim r^{-3/2} \mod (\eta = 0.1)$ $\rho \sim r^{-7/3} ext{ model } (\eta = 0.1)$ 10^{-4} 10⁻¹⁸ 10⁻¹⁸ 10^{-9} 10^{-6} 10^{-3} 10^{-15} 10^{-12} 10^{0} 10^3 $M_{\rm PBH} \left[M_{\odot} \right]$

For our M87 limits:

REFERENCES

L. Stodolsky, "Observational Aspect of Black Hole Dark Matter," Mod. Phys. Lett. A **36**, no.11, 2150077 (2021) doi:10.1142/S0217732321500772 [arXiv:1912.01325 [astro-ph.CO]].

J. Silk and L. Stodolsky, "Limits on primordial black holes from M87," Phys. Rev. D **105**, no.6, 063506 (2022) doi:10.1103/PhysRevD.105.063506 [arXiv:2201.03 [astro-ph.CO]]

Further

L. Stodolsky, "Primordial black holes in interferometry," [arXiv:2105.03648 [astro-ph.CO]]. Interesting theoretical issue:

If there are significant Black Holes , CMB is not a perfect Black Body

Intensity is like a BB, but there must be some hidden (angular) correlations

Can we see them ?