Axions: pushing towards the high
mass range
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Axions

* Introduced to solve the Strong CP

1
pl‘Oblem o%stand mod + axion o T zauaa“a
. g2 a(x) a Halyv
* New light pseudoscalar t G%,, G

* Can be non-thermally produced as a
good dark matter candidate

* Prototypical light dark matter
example (also hidden photons, ALPs
etc...)
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https:/github.com/cajohare
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How do you find a wave?

e Can’tjust look for scatterings

* Exploit the coherence of the field to
increase the signal

* Analogue: finding the right radio
station

* Currently in an experimental boom:
lots of new ideas and experiments
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Axion Electrodynamics

* Axions and ALPs interact with photons through an anomaly term
* This coupling is tiny, but still important

* Mixes with the photon in an external magnetic field
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Axion-Photon Conversion

* Inhomogeneous Maxwell equations get a new “current”-like term

eV -E = p—g4yBe-Va,
VxH-E =17+ g,Bea,
d—V2a+mga:ng-Be,

» Strong external B-field creates a small E-field
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Axion-Photon Conversion

* Lowest order QFT gives Fermi’s Golden Rule

Loy = ZWZ IM|?§(we — wy) .
k

* Matrix element given by the overlap of the wave functions (arXiv:1707.00701)
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» Experimental goal: how do we make this non-zero?
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Axion-Photon Conversion

* In vacuum and constant B-field this vanishes
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* Modity the free-photon wave function!
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Cavity Haloscopes

* Inside a cavity the photon wavefunction matches the cavity modes
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* Normalisation given by the quality factor
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Beyond Cavities

* Dish Antennas (BREAD, BRASS)

* Dielectric haloscopes MADMAX, MuDHI, LAMPOST)

* Plasma haloscopes (ALPHA)

* Resonators with LC circuits (ABRACADABRA, DM Radio, SHAFT, WISPLC)
* NMR (CASPER)

* sth force (ARIADNE, QUAX)

* Atomic transitions (AXIOMA)

* Topological insulators (TOORAD)
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Dish Antenna

» E-field depends on medium!

+ Breaks translation invariance with a T T T T T T T T AM/T]T T T T T B,

mirror (arXiv:1212.2970)
* No resonance!

* Completely broadband response
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Dish Antenna

* Focus a large area onto a detector to
increase S/N

» Experiments like FUNK, Tokyo,
SHUKET, BREAD, BRASS...

* Tends to be best for HP
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arXiv:2003.13144
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Multiple Layers: Dielectric Haloscope

£ ¢ ¢ ¢ et ¢ o

Power/area=2.2*10-27 W/m?2

EM waves from each interface +
internal reflections

Adjusting disc distances
=>coherent sum

Both transparent and resonant
modes important

Define boost factor 3, gain in E-
field over that of a mirror
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Dielectric Haloscopes

» Two different pictures: interfaces and volumes
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» Shape the wavefunction to get a non-zero overlap (arXiv:1612.07057,
arXiv:1707.00701)
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Dielectric Haloscopes

Dish antenna on steroids (arXiv:1611.05365)

Tune frequencies by controlling disk spacings

Lots of freedom over frequency response!

Very large volumes

Being pursued by MADMAX, MuDHI

and LAMPOST
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Experimental idea
Metallic disc

~80 high dielectric plates spacing ~mm (=)
to cm range for boost in the frequency
band 10 to 100 GHz
Disc
< \ <200cm . /positioning
\ motors
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Area Law

* How much control do you have?
/ B%dy < N

* Turns out to be a limited case of a general feature of haloscopes (arXiv:1912.11467)
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Area Law

Proof of the ‘“area law”

We consider a haloscope consisting of N identical dielectric disks which are arranged with
vacuum gaps of arbitrary width d; with j =1,..., N —1. The thickness of the disk is d.. The
haloscope is described by an N-dimensional vector of phase depths § = (d1,...,dn), where
0j =djwp for j =1,...,N — 1 and 0y = nd.wy, i.e., we use the dielectric disk properties as
the Nth variable. Here, n is the refractive index of the disks and wgy some baseline frequency.

The boost amplitude B is constructed from polynomials and powers of all e=®i. More-
over, BB involves dividing two such expressions. Overall, B is 27 periodic in any of the 9;, so
we may write it as an infinite Fourier series

B = Z ak eik'é, (01)
k
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The second integral over phases vanishes if the integration range is large enough. Alterna-
tively, if the different d; are commensurate, i.e., rational fractions of each other, then there
exists some finite s interval which is some integer multiple of 27 over which B is periodic. In
this case, we integrate over this period. In this sense, the average over the base volume in
the N-dim space of all phase depths is the same as the 1D average over all frequencies, for
any arrangement of phase depths.

Simple examples are the transparent mode where all d; are the same. Another example
is the resonant mode, where all vacuum gaps are the same, 6, = 61 = ... = dy_1 Whereas
the phase depth of the disk is half as much, d 5y = § = 6, /2. So in particular the transparent
and resonant modes emit the same power, averaged over all frequencies.
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Dielectric Haloscopes

* Two versions being pursued: movable disks, GHz version (MADMAX, DALI)

* Thin film optical version (MuDHI, LAMPOST)
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o Started at the Max Planck Institute
* Planned to be hosted at DESY

* Prototyping underway with a
magnet from CERN

 Full scale magnet being designed
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MADMAX

Mirror (not visible)

9 T dipole magnet

Cryostat (4 K
Y ( ) Horn antenna

& receiver system

Separate cryogenic
volume

Booster: 80 adjustable dielectric disks (21.25 m)
Focusing mirror
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Projected Reach
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Plasma Haloscopes

* What if you could match energy and momentum at the same time?
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* Resonance doesn’t care about the
size!

 Could we use it to make a much
larger device?

* What properties does it need?
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Wire Metamaterials

* Wire metamaterials!

.

* One of the first metamaterials

* Plasma frequency determined by two
factors: effective electron number density
and mass

* Wire spacing gives plasma frequency

N> 2T

merr  a?log(a/r)
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Quality factor

* In free space, radiative losses or resistance losses dominate depending on the size of the

device

* In a cavity, wire losses are most significant

* Can expect Q in the 10’s of thousands at cryogenic temperature with thick wires
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Tuning

* Only mutual inductance matters!

* Can tune by changing the wire geometry
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ALPHA

* Budding consortium with collaborators in SU, MIT,
Berkeley, ITMO...

* Building better analytical and numerical tools
(understanding of quality factors, mode structure)

* Early prototypes built, moving towards tuneable
and larger prototypes (arXiv:2203.10083,
arXiv:2203.13045)

* Likely to use a 13 T magnet at Oakridge
* ALPHA recently received ~$2.5M from the KAW

* More info in arXiv:2210.00017
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Discovery Potential
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Conclusions

* Axions are an exception dark matter candidate
* The high mass regime is extremely promising

* New techniques such as dielectric and plasma
haloscopes required to search for them

* Georg’s work helped build the theoretical
foundations to push into high mass axions
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