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PhD phase: General Kinetic Description

I don’t remember how the idea of developing a Boltzmann-like equation for

neutrino flavor matrices instead of occupation numbers came up.


But I remember that originally I was discouraged to delve too deep into developing

a general formalism for it.


But then, we started to understand more and more aspects which also made some

sense intuitively, which first led to a PRL, Raffelt, Sigl, Stodolsky, PRL 70 (1993) 2363,

and then to a detailed paper on the formalism,  Sigl and Raffelt, Nuclear Physics B

406 (1993) 423


During writing those papers, towards the end of my PhD thesis, came a little shock:

We found out that in the 1990s a Russian physicist, M.A. Rudzky, in Astrophys.

Space Science 165 (1990) 65 has done very similar things.
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Fortunately, upon closer inspection, there were also significant complementarities:

Our results were not restricted to flavor-conserving neutral currents (although Rudzky

included spin degrees of freedom, which we didn’t)


And, perhaps most importantly for me, he used very complicated index notation, 
whereas our notation was much more compact and (in my mind at least :-) much more 
elegant in expressing all terms in terms of matrix operations.


And, eventually, I could show that in the relevant limits ours results agreed with

Rudzky.


In addition, we found interesting connections to aspects of decoherence, molecular

chaos, and Boltzmann’s H theorem. I could construct various thermodynamic potentials

in terms of phase space integrals of flavor matrices and show that their time evolution

indeed satisfies the correct inequalities, e.g., entropy can only increase.
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Relation to Wavepacket Descriptions

Georg and me (together with other people) keep coming back to conceptual aspects

of kinetic descriptions, lately in particular in the context of the Liouville term and

connections to a wave interpretation, see

Stirner, Sigl and Raffelt, JCAP 05 (2018) 016.


On this topic we also developed a friendly competition with wave packet 
interpretations with people like Akhmedov, Smirnov, Lindner, …


We believe that one has to strictly distinguish between “kinematical decoherence”

caused by dephasing of many neutrinos or Fourier components in a single-neutrino

wavepacket and dynamical decoherence caused by “irreversible entanglement” with

the environment. For the former, no loss of information is implied and a description

in terms of wave packets does not contain additional information. In particular, no

additional ad hoc damping term should be added in that description.


The following slides summarise these topics, based on our papers from the 90s and

on the more recent Stirner, Sigl and Raffelt, JCAP 05 (2018) 016.
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Introduction: Non-Abelian Liouville Equation
For Nf flavours NfxNf density matrices are defined as (Wigner distributions)





and analogously for anti-neutrinos, with  annihilator of neutrino with flavour  
and momentum . Apart from the sources the equations of motion are Liouville 
equations with vacuum terms and refractive terms from a background medium and 
from self-interactions,





where Ωp0 is the vacuum term, Ωm is the matter term, and ΩS the self-interaction,





where in general GS=diag(1,…,1) for active neutrinos. For anti-neutrinos only the sign 
of Ωp0 changes in the commutator in Eq.(1).

ϱij(r, p) ≡ ∫ d3r′￼e−ip⋅r′￼⟨a†
j (r − r′￼/2)ai(r + r′￼/2)⟩ = ∫

d3Δ
(2π)3

eiΔ⋅r ⟨a†
j (p − Δ/2)ai(p + Δ/2)⟩ ,

ai(p) i
p

∂tϱ(r, p) + v(r, p) ⋅ ∇rϱ(r, p) = − i [Ω0
p + Ωm(r) + ΩS(r, p), ϱ(r, p)] , (1)

ΩS(r, p) = μ(r)∑
q≠p

(1 − vp ⋅ vq){GS[ρ(r, q) − ρ̄(r, q)]GS + GSTr [(ρ(r, q) − ρ̄(r, q))GS]} ,
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Generalisation to Non-Abelian Boltzmann Equation
For a Hamiltonian represented by the c-number flavour matrix  the

non-Abelian Boltzmann equation for the space-time and momentum dependent c-
number flavour density matrix  is generally written in the form





where the left hand side is known as Liouville term and the right hand side consists

of a commutator describing oscillations and the collision term  describes

absorption, emission and scattering between different momentum modes.


If only the kinetic part in  depends on momentum then  is a matrix of

velocities with eigenvalues in the neutrino mass basis given by 

and  becomes a matrix of neutrino fluxes. Note that they contain group

velocities, whereas the oscillation term contains phase velocities. The last term in

the Liouville term is a force term which is usually neglected. In absence of mixing, 
forces and collisions the Liouville equation thus just expresses flux conservation. 
Note that in a stationary situation the flux is conserved, not the neutrino number.

𝖧(t, r, p)

ϱ(t, r, p)

∂tϱ+ 1
2 {∂rϱ, ∂p𝖧} − 1

2 {∂pϱ, ∂r𝖧} = − i [𝖧, ϱ] + 𝒞 [ϱ] , (2)

𝒞[ϱ]

𝖧 Vp ≡ ∂p𝖧
vi = p/(p2 + m2

i )1/2

1
2 {ϱ, V}
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We want to derive the non-Abelian Boltzmann equation from the Heisenberg equation 
 for operators  and Hamilton operator . To this end we introduce the 

annihilation and creation operators of a neutrino or antineutrino of momentum p and 
flavour i,  which correspond to the spatial operators





and satisfy the anti-commutation relations





and analogously for anti-neutrinos.

i∂t
̂A = [ ̂A, Ĥ] ̂A Ĥ

̂ai(p, t), b̂i(p, t), ̂a†
i (p, t), b̂†

i (p, t)

ψ̂i(r) = ∫
d3p

(2πℏ)3/2
e−ip⋅r/ℏ ̂a(p) ,

{ ̂ai(p, t), ̂a†
j (p′￼, t)} = (2π)3δ3(p − p′￼)δij ,
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Derivation through Wigner and Moyal Distributions

We define the operators





and relate them to a space- and momentum dependent density operator through a

Wigner transformation,





For the Hamilton operator we make the ansatz





where  is a c-number matrix.

𝖣̂ij(p, p′￼, t) ≡ ̂a†
j (p′￼, t) ̂ai(p, t) ,

̂ϱij(t, r, p) = ∫
d3Δ
(2π)3

eiΔ⋅r D̂ij (p +
Δ
2

, p −
Δ
2

, t) .

Ĥ = ∫
d3p

(2π)3

d3p′￼

(2π)3
̂a†
i (p) 𝖧ij(p, p′￼) ̂aj(p′￼) ,

𝖧ij
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Using Heisenberg’s equation and after a few manipulations one arrives at





where the matrix  is related to the matrix  through the same kind of 
Wigner transformation relating  to .


A similar equation for first quantised scalars was first derived by Moyal. This is

an operator equation with so far no approximations.


Taking the expectation value  (mean field theory) and expanding 
the exponential up to first order then immediately gives the Liouville equation with 
flavour mixing,





Higher orders would yield the collision terms and other quantum corrections.

Planck’s constant (here set to unity) appears both on the left hand side and in the

exponent of the Moyal equation and thus cancels to lowest order, corresponding to

the classicality of Liouville’s equation.

iℏ∂t ̂ϱ(r, p) = 𝖧(r, p) e
i
2 ℏ( ∂ r⋅ ∂ p− ∂ p⋅ ∂ r) ̂ϱ(r, p) − ̂ϱ(r, p) e

i
2 ℏ( ∂ r⋅ ∂ p− ∂ p⋅ ∂ r) 𝖧(r, p) .

𝖧(r, p) 𝖧ij(p, p′￼)
̂ϱ(r, p) D̂ij(p, p′￼)

ϱ(r, p) ≡ ⟨ ̂ϱ(r, p)⟩

∂tϱ+ 1
2 {∂rϱ, ∂p𝖧} − 1

2 {∂pϱ, ∂r𝖧} = − i [𝖧, ϱ] . (3)
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Derivation through Husimi Distributions

We here simplify to one flavour . Smearing a Wigner distribution  with

Gaussians of width  in position and width  in momentum space gives





Choosing  the operator version can be put into the form





For the time evolution of the quantum field  we make the ansatz





which for  gives the relativistic dispersion relation .

Nf = 1 f(r, p)
η σ

F(r, p) ≡
1

(2πησ)3 ∫ d3r′￼d3p′￼f(r′￼, p′￼)exp [−
(r − r′￼)2

2η2
−

(p − p′￼)2

2σ2 ] .

σ = ℏ/(2η)

̂F(r, p) =
1

(2πη2)3/2 ∫
d3r1d3r2

(2πℏ)3
ψ̂†(r1)ψ̂(r2)exp [−

(r − r1)2 + (r − r2)2

4η2
+

ip ⋅ (r1 − r2)
ℏ ] .

ψ̂

iℏ∂tψ̂ = v ⋅ p̂ ψ̂ + V(r)ψ̂ , or ∂tψ̂ = − v ⋅ ∂rψ̂ − iV(r)ψ̂ /ℏ

V(r) = 0 ℏω = v ⋅ p
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A straightforward calculation and taking expectation values gives back the Liouville 
equation,





to this order independent of  ! The higher order terms give rise to quantum 
corrections which become in particular relevant on scales comparable to the de 
Broglie scale .


Solutions of such Liouville/Vlasov equations crucially depend on boundary and initial 
conditions.

∂tF(r, p) = − v ⋅ ∂vF + ∂rV ⋅ ∂pF + 𝒪(ℏ) ,

η

ℏ/p
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Particle Transport and Wave Equations

Connection between particle transport (Liouville), Schrödinger-type, and wave 
equations can also be illuminated in a more direct way: Starting from a Klein-
Gordon equation





one can consider plane waves propagating in a direction characterised by unit 
vector  with energy . Then the wave operator becomes





where we have approximated . The wave equation then turns into a 
Liouville equation





(∂2
t − Δ)ψ = − 𝖬2ψ

n E

(∂2
t − Δ) → (∂t − n ⋅ ∂r)(∂t + n ⋅ ∂r) ≃ − 2iE(∂t + n ⋅ ∂r) ,

|p | ≃ E

(∂t + n ⋅ ∂r)ψ ≃ − i
𝖬2

2E
ψ ,
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or for the density matrix ,





In a homogeneous system the above equation simplifies to , and in a 
stationary situation it reads  for propagation in  direction.


In general equation (4) has to be solved for each Fourier component . 
Wavepackets can be constructed by superposition; phase relations between 
different Fourier modes are lost by averaging over many neutrinos. Only kinematic 
decoherence is possible from above equation; dynamical decoherence requires 
collision terms.


ρij ≡ ψ*j ψi

(∂t + n ⋅ ∂r)ρ = − i[𝖧, ρ] , where 𝖧 =
𝖬2

2E
. (4)

∂tρ = − i[𝖧, ρ]
∂xρ = − i[𝖧, ρ] x

(E, pn)
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Phenomenological Consequences

We consider  flavours and in the mass basis set


 


in terms of Pauli matrices and with  and . In a stationary 
situation for propagation in x-direction Eq. (3) for one momentum mode gives





with  and . Expanding into Pauli matrices and polarisation 
vectors  and ,


Nf = 2

V = (v1 0
0 v2) = v σ0 +

δv
2

σ3 ,

v = (v1 + v2)/2 δv = v1 − v2

d
dx

ϱ + δv { d
dx

ϱ,
σ3

2 } = − i [ 𝖧
v

, ϱ] ,

v = (v1 + v2)/2 δv = v1 − v2
Bj Pj

𝖧
v

=
3

∑
j=1

Bj
σj

2
and ϱ =

3

∑
j=0

Pj
σj

2
,



15

and defining ,  and ,  one 
obtains





which gives rise to periodic motion and no decoherence. Note that the length of  is 
conserved, but not the one of .

P̃3 = P3(1 − δ2
v )1/2 P̃1,2 = P1,2 B̃1,2 = B1,2/(1 − δ2

v )1/2 B̃3 = B3

d
dx

P̃ = B̃ × P̃ ,

P̃
P
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Collision Terms and Dynamical Decoherence
Assuming molecular chaos for neutral current interactions the collision (Boltzmann) 
term at a given location  has the form





where  is the (scalar) scattering rate from state of four-momentum  
to a state of four-momentum , with  the energy corresponding to three-
momentum , and  a dimensionless flavour matrix characterising the coupling 
strengths of the different neutrino flavours. The c-number flavour densities  

and  refer to neutrinos and anti-neutrinos, respectively. The first two terms 
describe scattering and the last two describe pair creation and annihilation. They 
are related by crossing particles and substituting , which 

also gives a similar equation for .

r

∂tρp
coll,NC

=
1
2 ∫

d3q
(2π)3 [W(q, p)(1 − ρp)GρqG − W(p, q)ρpG(1 − ρq)G

+W(−q, p)(1 − ρp)G(1 − ρq)G − W(p, − q)ρpGρqG + h . c.] ,

W(q, p) (Eq, q)
(Ep, p) Ep

p G
ρp

ρp

p → − p ρp → 1 − ρp

∂tρp
coll,NC
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Charged current source terms at a given location  have the form





with  and  flavour-diagonal  matrices with production and 

absorption rates of neutrinos of given flavour and four-momentum  on the 
diagonal. Assuming detailed balance for the background plasma this becomes





with  the equilibrium occupation numbers,





r

∂tρp
coll,CC

= {𝒫(p), (1 − ρp)} − {𝒜(p), ρp} ,

𝒫(p) 𝒜(p) Nf × Nf

p

∂tρp
coll,CC

= {𝒫(p), (1 −
ρp

f0p )} ,

f0p

f0p ≡ feq(Ep) =
1

e(Ep−μ)/T + 1
.
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Analogous equations for scattering, pair production and annihilation, and 
production and absorption of single particles for bosons are obtained with the 
substitution





In words: Pauli blocking turns into stimulated emission.

1 − ρp → 1 + ρp



19

If the neutrinos are coupled to a medium in thermal equilibrium characterized by a 
temperature  and a chemical potential  for the lepton number, then one can show 
that the neutrino grand canonical potential





can never increase, i.e. . Here, the internal energy of the neutrino ensemble 
, its total lepton number , and its entropy  are given by





Analogous expressions for bosons are again obtained by substituting 
.

T μ

Ων ≡ Uν − TSν − μLν , (5)

·Ων ≤ 0
Uν Lν Sν

Uν = ∫
d3p

(2π)3
|p |Tr(ρp + ρp) ,

Lν = ∫
d3p

(2π)3
Tr(ρp − ρp) ,

Sν = − ∫
d3p

(2π)3
Tr[ρp ln(ρp) + (1 − ρp)ln(1 − ρp) + ρp ln(ρp) + (1 − ρp)ln(1 − ρp)] .

1 − ρp → 1 + ρp
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If there are only neutral current interactions, lepton number  will be conserved

and Eq. (5) implies that the neutrino free energy  can never

increase, . If neutrinos interact only among themselves, the neutrino

energy  will be conserved in addition, and the neutrino entropy  can

never decrease, . Derivation is similar to Boltzmann’s H-theorem, but now with 
flavour matrices.


Real dynamical decoherence is tied to an increase of entropy, or a decrease of the

grand  canonical potential or the free energy and thus can only be caused by

collision terms.


The entropy does not increase only if the occupation number matrices already

equal their equilibrium values, .

Lν
Fν ≡ Uν − TSν·Fν ≤ 0

Uν Sν·Sν ≥ 0

∂tρp = 0 , ρp = f0p
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We also have a history of struggling with papers by Raymond Sawyer, in 
particular the recent arXiv:2206.09290.


It may actually go beyond our original framework in the following sense:


It considers correlations between two different momentum modes


The argument in our previous papers was that for lepton number conserving 
systems that start in a lepton number eigenstate, expectation values of a

creator of a neutrino and annihilator of an antineutrino in a given momentum 
mode should vanish at all times. According to Sawyer’s evolution equations

it seems they would indeed vanish at all times because the r.h.s. always contains 
at least one of those term. On the other hand there may be fluctuations that 
break the condition L=0: Unstable initial condition.



Conclusions
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1.) There is a deep connection between Schrödinger-like equations

for the wave operators and the classical Liouville equation and its

generalisation to collisional Vlasov/Boltzmann equations

3.) Higher order terms would describe correlations between momentum modes and 
collision terms which can also lead to dynamic decoherence

2.) Classical behaviour emerges on length scales large compared to the de Broglie 
wavelength  to lowest order in an expansion in . To this order one has 
collisionless particle transport and kinematic decoherence

ℏ/p ℏ

4.) Integrating out momentum modes gives a connection between wave equations 
and classical fluid equations through the Madelung transformation (not discussed 
here)

5.) The forward scattering term then is the foundation for all the collective

effects whose exploration was heavily influenced by Georg’s work


