Fast Neutrino Flavor Conversions in 1D Core-Collapse Supernova Simulations

CTAP Workshop, November 10, 2022 In honor of Georg Raffelt

Sajad Abbar

Max Planck Institut für Physik (MPP)

In collaboration with Jakob Ehring , Hans-Thomas Janka, and Georg Raffelt

Neutrino Oscillations in Dense Media

 Neutrino evolution in dense neutrino media is very different from the one in vacuum and matter

$$i(\partial_t + \mathbf{v} \cdot \nabla)\rho = [H, \rho]$$

$$H = \frac{1}{2} \begin{bmatrix} -\omega \cos 2\theta + \sqrt{2}G_{\mathrm{F}}n_{e} & \omega \sin 2\theta \\ \omega \sin 2\theta & \omega \cos 2\theta - \sqrt{2}G_{\mathrm{F}}n_{e} \end{bmatrix} + H_{\nu\nu}$$

$$\sqrt{2}G_{\mathrm{F}} \int \frac{d^{3}q(1 - \mathbf{v_{P}} \cdot \mathbf{v_{q}})(\tilde{\rho}_{\nu} - \rho_{\bar{\nu}})}{\mathsf{coupling}}$$

$$\mathsf{coupling}$$

• It is important to understand neutrino flavor evolution

Fast Flavor Conversions

- In our traditional understanding, we assumed that neutrinos are emitted isotropically from the surface of the neutrino source
- $f_{\nu_e}(\theta)$ $f_{\bar{\nu}_e}(\theta)$ is either always positive or negative

• This implies that the scales on which flavor conversion could occur are determined by vacuum frequency $\Delta m^2/2E\sim 1~{\rm km}^{-1}$

Fast Flavor Conversions

• FFC could occur when there is crossing in $f_{\nu_e}(\theta)$ – $f_{\bar{\nu}_e}(\theta)$

- Scales on which flavor conversion can occur is now proportional to n_{ν} and could be < 10 cm
- Neutrino oscillations can now occur at densities that had been long thought to be the realm of collisional and scattering processes

- FFC can not be implemented self-consistently
- We assume FFC lead to a sort of flavor equilibrium

- We perform SN simulations including FFC for a 1D 20M⊙ model, in a parametric way
- We set a density threshold ($\rho_c=10^9-10^{14}~{
 m g~cm}^{-3}$) below which FFC can occur

FFC

 We perform SN simulations including FFC for a 1D 20Mo model, in a parametric way

> Ehring+(In preparation) 150 **NFC** 1e09 1e10 1e11 1e12 1e13 1e14 50 r_{shock} r_{PNS} 300 100 200 400 $t_{\rm pb}$ [ms]

- Two competing effects here
 - $\nu_x
 ightarrow \nu_e, \bar{\nu}_e$ at the tail increases heating

- Two competing effects here
 - $\nu_x \rightarrow \nu_e, \bar{\nu}_e$ at the tail increases heating

- Two competing effects here
 - $\nu_x \rightarrow \nu_e, \bar{\nu}_e$ at the tail increases heating
 - $u_e, \bar{\nu}_e \to \nu_x$ at the peak increases total neutrino luminosity

- Two competing effects here
 - $\nu_x
 ightarrow \nu_e, \bar{\nu}_e$ at the tail increases heating
 - $u_e, \bar{\nu}_e \rightarrow \nu_x$ at the peak increases total neutrino luminosity

CTAP Workshop, November 10, 2022

Neutron Star Mergers

Figure from Perego et. al., arxiv: 1405.6730

 Hot hyper massive NS and the accretion disk emit a huge number of neutrinos

Neutron Star Mergers

Figure from Perego et. al., arxiv: 1405.6730

- Fast modes can occur in a wide region even inside the disk
- Any self-consistent neutrino transport should implement fast conversions.

 Hot hyper massive NS and the accretion disk emit a huge number of neutrinos

Just+2022 (also Li+2021, Fernandez+2022, Grohs+2022,)

Neutron Star Mergers

- We perform simulations with self-consistent neutrino transport
- The presence of fast conversions inside the torus opens up a new cooling channel
- The impact of the fast modes remains small on the Ye due to a sort of self-regulating mechanism

Fast Flavor Conversions

• FFC could occur when there is crossing in $f_{\nu_e}(\theta)$ – $f_{\bar{\nu}_e}(\theta)$

Fast Flavor Conversions

 The angular distributions are not available, instead we have only access to their moments

$$I_n = \int d\cos\theta_{\nu} \, \cos^n\theta_{\nu} \, f_{\nu}(\cos\theta_{\nu})$$

- We can still make progress!
- Dasgupta+2018; Abbar2020; Johns+2021; Richers2022;
- But these methods are normally inefficient and very slow
- FFC can not be detected on the fly

• A classification problem!

- Machine learning can help us
- We have four feature here: I_0 and I_1 for neutrinos and antineitrnonos (one is redundant)
- A number of ML algorithms out there. I here introduce:
 - KNN
 - Decision Tree
 - Naive Bayes
 - SVM
 - Logistic Regression

KNN

 KNN is one of the simplest forms of machine learning algorithms mostly used for classification. It classifies the data point on how its neighbor is classified.

Decision Tree

In decision tree, one makes decision using a tree-like structure.
 At each node, one of the features is selected and the branching occurs.

Naive Bayes

 Naive Bayes classifier is a probabilistic machine learning model which is based on the Bayes theorem

SVM

• Support Vector Machine is a classification based on finding a line that classifies the data points, maximises the margins

Logistic Regression

 Based on finding a line that separates the data points, in which a logistic function is applied on the top of the linear one so that one can decide on the basis of some final values which are in (0,1)

http://www.elusives.eu

• For training, we use analytical maximum-entropy distribution

$$f_{\nu}(\cos\theta_{\nu}) = \exp(-\eta + a\cos\theta_{\nu})$$

• For training, we use analytical maximum-entropy distribution

$$f_{\nu}(\cos\theta_{\nu}) = \exp(-\eta + a\cos\theta_{\nu})$$

gaussian
$$f_{\nu}(\cos\theta_{\nu}) = \exp[-a(1-\cos\theta_{\nu})^2 + b]$$

• We have four feature here: I_0 and I_1 for neutrinos and antineutrinos (one is redundant)

accuracy

• KNN

- Naive Bayes
- SVM
- Logistic Regression

- ~ 95%
- ~ 92%
- ~ 90%
- ~ 94%
- ~ 94%

 Machine learning methods prove to be very promising regarding the detection of FFI

 Machine learning methods prove to be very promising regarding the detection of FFI

