# EFT for $\mu \rightarrow e$ Flavour Change(LFV)

Sacha Davidson (IN2P3/CNRS, FR) + Marco Ardu<sub>(applying for pd)</sub>, B Echenard, M Gorbahn, Y Kuno,...

LFV is boring { no anomalies uncountable models predict signals in upcoming expts and EFT is tedious ... { no predictions endless incomprehensible parameters So how to entertain such an excellent phenomenologist as Georg for 20 minutes? (eat chocolate?)

## What to learn about $m_{\nu}$ -mechanism from $\mu \rightarrow e$ rates?

Sacha Davidson (IN2P3/CNRS, FR)

+ Marco Ardu, B Echenard, M Gorbahn, Y Kuno, M Yamanaka, U Uesaka,...



But LFV might be interesting later: *has to exist*, and many exptal searches.... ...while we wait, ask "what can we learn about neutrinos from LFV?"

about the mass mechanism? magnetic moments? number of singlets? NSI?  $\ldots$ 

#### A pheno question, so

- 1. start from data : bounds on LFV (... three  $\mu \rightarrow e$  processes) parametrise with contact interactions
- 2. EFT to take data to models (peel off SM loops)
- 3.. what can it tell us about heavy leptonic NP?

### Meet lepton flavour change...categories



### Meet lepton flavour change...categories



• Can make categories of LFV processes:

J Heeck

 $\Delta LF = 1, \Delta QF = 0$  $\mu A \rightarrow eA, \ \tau \rightarrow 3l, \ h \rightarrow \tau^{\pm} l^{\mp} \dots \ (l \in \{e, \mu\})$ 

 $\Delta LF = 2$  $\mu \bar{e} \rightarrow e \bar{\mu}, \ \tau \rightarrow e e \bar{\mu}...$ 

 $\Delta LF = \Delta QF = 1$  $K \to \mu \bar{e}, \ B \to K \tau \bar{\mu}, \dots$ 

categories pprox independent below  $\Lambda_{
m LFV}$ 

### bounds/upcoming reach to $\Delta LF = 1, \Delta QF = 0$

| some processes                                                                                                | current constraints on BR              | future sensitivities                            |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------|
| $\mu \! \rightarrow \! e \gamma$                                                                              | $< 4.2 \times 10^{-13}$                | $6	imes 10^{-14}$ (MEG)                         |
| $\mu \rightarrow e \bar{e} e$                                                                                 | $< 1.0 	imes 10^{-12}$ (SINDRUM)       | $10^{-16}$ (202x, Mu3e)                         |
| $\mu A \to eA$                                                                                                | $< 7 	imes 10^{-13}$ Au, (sindrumii)   | $10^{-(16 ightarrow?)}$ (Mu2e,COMET)            |
|                                                                                                               |                                        | $10^{-(18 \rightarrow ?)}$ (prism/prime/enigma) |
| $	au 	o \{e, \mu\}\gamma$                                                                                     | $< 3.3, 4.4 \times 10^{-8}$            | few $	imes 10^{-9}$ (Belle-II)                  |
| $\tau \to e \bar{e} e, \mu \bar{\mu} \mu, e \bar{\mu} \mu$                                                    | $< 1.5 - 2.7 	imes 10^{-8}$            | ${\sf few}{	imes}10^{-9}$ (Belle-II, LHCb?)     |
| $	au 	o \left\{ egin{smallmatrix} e \\ \mu \end{smallmatrix}  ight\} \left\{ \pi, \rho, \phi, \ldots  ight\}$ | $\lesssim {\rm few} \times 10^{-8}$    | few $\times 10^{-9}$ (Belle-II)                 |
| $h \to \tau^{\pm} \ell^{\mp}$                                                                                 | $< 1.5, 2.2 	imes 10^{-3}$ (Atlas/cms) | $< 2.4 	imes 10^{-4}$ (ILC)                     |
| $h \to \mu^{\pm} e^{\mp}$                                                                                     | $< 6.1 	imes 10^{-5}$ (ATLAS/CMS)      | $2.1	imes 10^{-5}$ (ILC)                        |
| $Z \to e^{\pm} \mu^{\mp}$                                                                                     | $< 7.5 	imes 10^{-7}$ (Atlas)          |                                                 |
| $Z \to l^{\pm} \tau^{\mp}$                                                                                    | $<	imes 10^{-7}$ (ATLAS)               |                                                 |

 $\mu A \to e A \equiv \mu \text{ in } 1s$  state of nucleus A converts to e

#### parametrising the data — EFT part 1

parametrise LFV processes via contact interactions (at low E)



suppose  $\{C_O^{\zeta}\}$  momentum-indep (no form factors)  $\Leftrightarrow$  New Particles are heavy ( $\zeta =$ flavour, O =Lorentz structure of operators  $\times$ chirality=X)

$$\delta \mathcal{L} = \sum_{\zeta} \sum_{O} \left( \frac{m_{\mu} C_{D,X}^{e\mu}}{v^2} \overline{e} \sigma \cdot F P_X \mu + \frac{C_O^{\zeta}}{v^2} O^{\zeta} + \frac{C_O^{\zeta}}{v^3} O^{\zeta} + \dots + h.c. \right) \qquad (v = 174 \text{ GeV})$$

### parametrising the data — EFT part 1

parametrise LFV processes via contact interactions



suppose  $\{C_O^{\zeta}\}$  momentum-indep (no form factors)  $\Leftrightarrow$  New Particles are heavy ( $\zeta =$ flavour, O =Lorentz structure of operators  $\times$ chirality=X)

$$\begin{split} \delta \mathcal{L} &= \sum_{\zeta} \sum_{O} \left( \frac{m_{\mu} C_{D,X}^{e\mu}}{v^2} \overline{e} \sigma \cdot F P_X \mu + \frac{C_O^{\zeta}}{v^2} O^{\zeta} + \frac{C_O^{\zeta}}{v^3} O^{\zeta} + \ldots + h.c. \right) \\ \Rightarrow \text{ express LFV rates in terms of } \{C_O^{\zeta}\}, \ X \in \{L,R\} \end{split}$$
  $(v = 174 \text{ GeV})$ 

$$BR(\mu \to e\gamma) \Rightarrow C_{D,L}, C_{D,R} \le 10^{-8}$$
$$BR(\mu A \to eA)_{SI} \Rightarrow |\sum r_{O,X} C_{O,X}| \le 10^{-7} \quad \text{(also SD)}$$
$$BR(\mu \to e\bar{e}e) \Rightarrow C_{D,X}, C_{V,RX}, C_{V,LX} C_{S,XX} \le 10^{-6}$$

#### 12 constraints.

(at low E)

### Next...how to get to models?

• can calculate LFV rates in BSM neutrino models

 $\{C_{O}^{\zeta}\}\$  depend on (energy) scale, due to SM loops,

...but is backwards = want to start from data

assumes heavy New Physics

described by RGEs

 $\Lambda_{NP}$ ( $\Rightarrow$  neglects effects of new light steriles  $\Leftrightarrow$  not link LFV and neutrino mag mos, etc).

data  $(\mu \rightarrow e\gamma, \mu \rightarrow e\overline{e}e, \mu A \rightarrow eA)$ 

• ? try EFT?

### Using EFT, part 2: changing scale

 $\Lambda_{NP}$ 

Renormalisation Group Eqns allow to change scale within an EFT  $\Leftrightarrow$  add/peel off loops



### Using EFT, part 2: changing scale

Renormalisation Group Eqns allow to change scale within an EFT  $\Leftrightarrow$  add/peel off loops



worth to include loops, because few constraints; models might not generate exptal processes at tree

data ( $\mu \rightarrow e\gamma, \mu \rightarrow e\overline{e}e, \mu A \rightarrow eA$ )



(operators + RGEs: everything to which data could be sensitive)

operator basis: below  $m_W$ , all gauge invariant operators with  $\leq 4 \text{ legs } \approx 100 \text{ ops.}$ add to  $\mathcal{L}_{SM}$  as  $\delta \mathcal{L} = 2\sqrt{2}G_F C_{V,LL}^{e\mu ee}(\overline{e}\gamma\mu)(\overline{e}\gamma e) + ...$ (not dim6: bottom-up perspective/ operator dim. not preserved in matching) above  $m_W$ : dim 6 + selected dim 8 (guess by powercounting) ArduDavidson

**RGEs+matching:** at "leading order"  $\equiv$  largest contribution of each operator to each observable. (2GeV $\rightarrow m_W$ :resum LL QCD,  $\alpha_e \log$ , some  $\alpha_e^2 \log^2$ ,  $\alpha_e^2 \log$ ) not just 1-loop RGEs; two-loop sometimes relevant (1-loop vanishes/suppressed)

... but  $\mu \to e$  rates only constrain  $\sim 12\{C_O^{\zeta}\}$ .

### many operators+few constraints=using inconvenient basis

Have 6 (+6) constraints on  $e_L$  ( $e_R$ ) operator coefficients. Focus on  $e_L$ . Want to change basis to *scale* -*dependent* basis of constrained 6-d subspace.

**1.**  $\mu \rightarrow e\gamma$  measures  $C_{D,R}(m_{\mu})$ Have RGEs for coefficients (arranged in row vector)

$$\mu \frac{\partial}{\partial \mu} \vec{C}(\mu) = \vec{C}(\mu) \Gamma(\mu, g_s(\mu), ...) \quad \Rightarrow \quad \vec{C}(m_\mu) = \vec{C}(m_W) \boldsymbol{G}(m_\mu, m_W)$$

solved as scale-ordered exponential (resummed QCD,  $\alpha \log$ , some  $\alpha^2 \log^2, \alpha^2 \log$ )  $\Rightarrow$  define scale-dep  $\vec{v}_{\mu \to e\gamma}(\Lambda)$ , column of **G** such that:  $C_{DR}(m_{\mu}) = \vec{C}(\Lambda) \cdot \vec{v}_{\mu \to e\gamma}(\Lambda)$  $\vec{v}_{\mu \to e\gamma}(\Lambda)$  is scale-dep basis vector for constrainable subspace

**2-6.** repeat for other independent constraints. So obtain scale-dep basis vectors for the subspace, defined from the observables. The "flat directions" (experimentally inaccessible) are orthogonal, and therefore

irrelevant.

Basis should span the finite-eigenvalue subspace of the correlation matrix.

match to models, and explore what we can learn

#### match to models, and explore what we can learn

**Ex:** Type II seesaw (add triplet scalar  $\vec{T}$ ,  $[m_{\nu}] \propto [Y]\lambda_{H}$ )  $\mathcal{L} \supset \left( [Y]_{\alpha\beta} \,\overline{\ell_{\alpha}^{c}} \varepsilon \vec{\tau} \cdot \vec{T} \ell_{\beta} + M_{T} \lambda_{H} \, H \varepsilon \vec{\tau} \cdot \vec{T^{*}} H + \text{h.c.} \right) + \dots$ Are some experimentally accessible regions inaccessible to some models?



model prediction = red hashed current expt exclusion = blue hashed

### Summary: maybe charged leptons can help us learn about $\nu$ s

 $\mu \rightarrow e\gamma, \mu \rightarrow e\overline{e}e$  and  $\mu A \rightarrow eA$  have exceptional sensitivity ( $\Lambda_{\rm LFV} \lesssim 10^2 \rightarrow 10^3$  now,  $\Lambda_{\rm LFV} \lesssim 10^3 \rightarrow 10^4$  upcoming), to only a few operators at low energy, so:

interesting to include RGEs(at leading order), because ensure that almost every  $\mu \to e$  operator (in chiral basis) with  $\leq 4$  legs contributes at  $\gtrsim \mathcal{O}(10^{-3})$  to  $\mu \to e\gamma$  and/or  $\mu \to e\bar{e}e$  and/or  $\mu A \to eA$ 

Can even have interesting sensitivity to products of some  $(\mu \rightarrow \tau) \times (\tau \rightarrow e)$  interactions!

But most directions in coefficient space are untestable (*not* an *EFT-problem*, *its* a consequence of searching for NP under the lamppost.) Can circumvent this by changing operator basis: a convenient basis for comparing models to  $\mu \rightarrow e$  flavour-changing observables can be constructed from the observables.

Thanks Georg





### LFV categories $\approx$ independent below $\Lambda_{\rm LFV}$

$$\begin{array}{l} \Delta LF = 1, \Delta QF = 0\\ \mu A \rightarrow eA, \ \tau \rightarrow 3l, \ h \rightarrow \tau^{\pm} l^{\mp} \dots \ (l \in \{e, \mu\}) \end{array} \qquad \qquad \Delta LF = 2\\ \mu \bar{e} \rightarrow e \bar{\mu}, \ \tau \rightarrow e e \bar{\mu} \dots \end{array}$$

categories  $\approx$  independent below  $\Lambda_{\rm LFV}$ 

- SM loops corrections to  $\Delta LF = 2$  cannot give  $\Delta LF = 1$  (LFV is at  $\Lambda_{\rm LFV}$ )
- $(\Delta LF = 1)^2 \rightarrow \Delta LF = 2$ , but better exptal bds on  $\Delta LF = 1$ .
- $\Delta LF = \Delta QF = 1$  mixes with  $\Delta LF = 1$  in SMEFT. But quark FCNC small, so effect < "forseeable" exptal reach on  $\Delta LF = 1$ . (for  $\Lambda_{LFV} > 4$  TeV). ArduDavidson

### But to reconstruct $\mu \to e$ bottom-up, need all data? $eg \ BR(\pi^0 \to e^{\pm}\mu^{\mp}) < 3.6 \times 10^{-10}$ , or $BR(\Upsilon \to l_1\bar{l}_2) \lesssim 10^{-6}$ ?

Ummm: 
$$\mu$$
 decays weakly  $\Leftrightarrow \tau_{\mu} \sim 10^{-6}$  sec.  
vs  $\tau_{\pi^0} \sim 10^{-16}$  sec (loop-suppressed QED), or  $\tau_{\Upsilon} \sim 10^{-20}$  sec (tree QED/QCD)

Compare weak  $\mu$  decays to anomalous QED  $\pi_0$  decay (write  $\delta \mathcal{L} \sim \frac{1}{\Lambda_{\rm LFV}^2} (\bar{e}\mu)(\bar{q}q) + \frac{1}{\Lambda_{\rm LFV}^2} (\bar{e}\gamma\mu)(\bar{e}\gamma e)$ ):

$$BR(\mu \to e\bar{e}e) = \frac{\Gamma(\mu \to e\bar{e}e)}{\Gamma(\mu \to e\bar{\nu}\nu)} \sim \left|\frac{m_{\mu}^2/\Lambda_{\rm LFV}^2}{m_{\mu}^2G_F}\right|^2 \sim \frac{v^4}{\Lambda_{\rm LFV}^4} \lesssim 10^{-12} \Rightarrow \Lambda_{\rm LFV} \gtrsim 10^5 \text{GeV}$$
$$BR(\pi_0 \to \bar{e}\mu) = \frac{\Gamma(\pi_0 \to \bar{e}\mu)}{\Gamma(\pi_0 \to \gamma\gamma)} \sim \left|\frac{m_{\pi}^2/\Lambda_{LFV}^2}{\alpha/4\pi}\right|^2 \sim \left(\sqrt{\frac{4\pi}{\alpha}}\frac{m_{\pi}}{\Lambda_{LFV}}\right)^4 \Rightarrow \Lambda_{\rm LFV} \gtrsim \text{TeV}$$

... rare  $\mu$  processes have exceptional *sensitivity*, because  $\mu$  decay weak. Other  $\mu \rightarrow e$  processes constrain "orthogonal" operator coefficients, less well.  $\mu A 
ightarrow eA$ : most sensitive process, expt + th





target (Z=13,A=27, J=5/2)

•  $\mu^-$  captured by Al nucleus, tumbles down to 1s. ( $r\sim Zlpha/m_\mu \stackrel{_>}{_\sim} r_{Al}$ )

- in SM: muon "capture"  $\mu + p \rightarrow \nu + n$ , or decay-in-orbit
- LFV: $\mu$  interacts with  $\vec{E}$ , nucleons (via  $\tilde{C}^{N}_{\Gamma,X}(\bar{e}\Gamma P_X N)(\bar{N}\Gamma N)$ ), converts to e

$$\mu \rightarrow \mathcal{O} \xrightarrow{p} \mu \xrightarrow{p} \mu \xrightarrow{n} \Gamma = \{I, \gamma_5, \gamma^{\alpha}, \gamma^{\alpha} \gamma_5, \sigma\}$$

$$\Gamma = \{S, P, V, A, T\}$$

$$\approx \text{WIMP scattering on nuclei}$$
1) "Spin Independent" rate  $\propto A^2$  (amplitude  $\propto \sum_N \propto A$ )  
 $BR_{SI} \sim Z^2 |\sum ... \tilde{C}_{SI}|^2$ ,  $\tilde{C}_{SI} \in \{\tilde{C}_V^p, \tilde{C}_S^p, \tilde{C}_N^n, \tilde{C}_S^n, C_D\}$ 

2) "Spin Dependent" rate  $\sim \Gamma_{SI}/A^2$  (sum over  $N \propto$  spin of only unpaired nucleon)  $BR_{SD} \sim ... |\tilde{C}_A^N + 2\tilde{C}_T^N|^2$  CiriglianoDavidsonKuno HoferichterEtal

#### Can't we do without RGEs, etc?

in discovery mode for LFV+electroweak loops are small...include later?

counterex:  $\mu A \rightarrow eA$  in model giving tensor  $2\sqrt{2}G_F C_T^{uu}(\overline{e}\sigma P_R\mu)(\overline{u}\sigma u)$  at weak scale

1: forget loops quark tensor matches to nucleon spin  $\bar{N}\gamma\gamma_5N$  :  $(N \in \{n, p\})$ 

 $\Rightarrow BR(\mu A \rightarrow eA) \approx BR_{SD} \approx \frac{1}{2} |C_T^{uu}|^2 \quad \begin{array}{c} \text{(CiriglianoDKuno)} \\ \text{Hoferichter etal} \end{array}$ 

2: include QED loops  $m_W \rightarrow 2$  GeV:



Then, scalar ops have enhanced nuclear matrix elements, and are SpinIndep:

$$BR(\mu A \rightarrow eA) \approx BR_{SI} \sim Z^2 |2C_T^{uu}|^2 \sim 10^3 BR_{SD}$$

loops can change Lorentz structure/external legs  $\Rightarrow$  different operator whose coefficient better constrained. Important for  $\mu \rightarrow e$ . (?not  $\tau \rightarrow l$ ?)

### 3 processes, many ops: if $\Delta QF = 0$ , $\mu \rightarrow e$ occurs, will it contribute to $\mu \rightarrow e\gamma$ , $\mu \rightarrow e\overline{e}e$ or $\mu A \rightarrow eA$ ?

2010.00317

**Probably yes:** SM loops ensure almost every  $\Delta QF = 0$ ,  $\mu \rightarrow e$ interaction with  $\leq 4$  legs, contributes  $\gtrsim \mathcal{O}(10^{-3})$  to amplitudes  $\mu \rightarrow e\gamma$ ,  $\mu \rightarrow e\bar{e}e$  and/or  $\mu A \rightarrow eA$ (not  $\bar{e}\mu G\tilde{G}$ ,  $\bar{e}\mu F\tilde{F}$ ,  $\bar{e}\gamma\mu F\partial F...$ )

| coefficient                             | $\mu \! \rightarrow \! e \gamma$ | $\mu \rightarrow e \bar{e} e$ | $\mu A \rightarrow eA$  |
|-----------------------------------------|----------------------------------|-------------------------------|-------------------------|
| $ C_{D,X} $                             | $1.12 \times 10^{-8}$            | $4.30 \times 10^{-7}$         | $2.35 \times 10^{-7}$   |
| $ C_{V,XX}^{ee} $                       | $1.10 \times 10^{-4}$            | $7.80 \times 10^{-7}$         | $1.86 \times 10^{-5}$   |
| $ C_{V,XY}^{ee} $                       | $2.55 \times 10^{-4}$            | $9.34 \times 10^{-7}$         | $3.77 \times 10^{-5}$   |
| $ C_{S,XX}^{ee} $                       | $1.73 \times 10^{-4}$            | $2.8 \times 10^{-6}$          | $(3.64 \times 10^{-3})$ |
|                                         | 4                                | -                             | -                       |
| $ C_{VXX}^{\mu\mu} $                    | $1.10 \times 10^{-4}$            | $5.60 \times 10^{-5}$         | $1.85 \times 10^{-5}$   |
| $ C_{VXY}^{\mu\mu} $                    | $2.56 \times 10^{-4}$            | $1.12 \times 10^{-4}$         | $3.77 \times 10^{-5}$   |
| $ C_{S,XX}^{\mu\mu} $                   | $8.24 \times 10^{-7}$            | $(1.58 \times 10^{-5})$       | $(1.73 \times 10^{-5})$ |
| ,                                       |                                  |                               |                         |
| $ C_{V,XX}^{\tau\tau} $                 | $3.80 \times 10^{-4}$            | $1.95 \times 10^{-4}$         | $1.24 \times 10^{-5}$   |
| $ C_{V,XY}^{\tau\tau} $                 | $4.40 \times 10^{-4}$            | $1.91 \times 10^{-4}$         | $1.25 \times 10^{-5}$   |
| $ C_{S,XX}^{\tau\tau} $                 | $5.33 \times 10^{-6}$            | $1.02 \times 10^{-4}$         | $1.12 \times 10^{-4}$   |
| $ C_{S,XY}^{\tilde{\tau}\tilde{\tau}} $ | —                                | —                             | —                       |
| $ C_{T,XX}^{\tau\tau} $                 | $1.10 \times 10^{-8}$            | $(4.20 \times 10^{-7})$       | $(2.30 \times 10^{-7})$ |

sensitivities/1-at-a-time bds for  $\delta \mathcal{L} = 2\sqrt{2}G_F C_i \mathcal{O}_i$ ; if model gives smaller coefficients, it is consistent with data. If it generates larger coefficients, need to arrange a cancellation...

 $\Leftrightarrow$  modulo cancellations, probably find  $\mu \leftrightarrow e$ 

ArduDGorbahn

$$[\mu 
ightarrow au] imes [ au 
ightarrow e] = [\mu 
ightarrow e] \Rightarrow ?$$

recall exptal reach:  $BR(\mu \to e) \to 10^{-(18 \to 20)} \sim [BR(\tau \to l) \to 10^{-9}]^2$ ? learn about  $\tau \to l$  from  $\mu \to e$ ?

1. if model has  $(\mu \to \tau) \text{,} (\tau \to e)$  , then no conserved flavour, so "expect"  $\mu \to e$ 

2. can one calculate anything model-independent? In SMEFT,  $(\dim 6)^2 \rightarrow \dim 8$ , eg  $\overline{\ell}e\varepsilon \overline{q}u \times (\overline{\ell}\gamma\ell)(\overline{q}\gamma q) \rightarrow \overline{\ell}e\varepsilon \overline{q}uH^{\dagger}H$  $\frac{\Delta}{\Lambda_{\rm LEV}^{(8)}C^{e\mu uu}} \simeq \frac{\{y_t^2, g^2\}}{16\pi^2}\frac{C_{LQ}^{e\tau ut}C_{LEQU}^{\tau\mu tu}}{\Lambda_{\rm LEV}^2} \qquad u \checkmark^{t/t}$ 

so effective low-energy 4-fermion interaction  $2\sqrt{2}G_FC_S$ 

$$\Delta {}^{(6)}C_S^{e\mu uu} \propto \frac{v^4}{16\pi^2\Lambda_{\rm LFV}^4}C^{e\tau ut}C^{\tau\mu tu}$$



3. find eg,  $\mu A \rightarrow eA$  sensitivity complementary to  $B^- \rightarrow \{e, \mu\}\nu$  decays for some operators:

$$\begin{array}{c}
\mu & e \\
f_{1} & \text{Including SM loop corrections to operators} \\
f_{2} & f_{2} & \text{ex: 1-loop QED + QCD (+2-loop QED V \rightarrow D)} \\
f_{2} & f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} & f_{2} & f_{2} \\
\mu & e \\
f_{2} & f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} & f_{2} & f_{2} \\
\mu & e \\
f_{2} & f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e \\
f_{2} & f_{2} \\
\end{array}$$

$$\begin{array}{c}
\mu & e$$

 $C_{Lor}^{\zeta}(m_W)$  on right.  $\lambda = \alpha_s(m_W)/\alpha_s(2\text{GeV}) \simeq 0.44$ ,  $f_{TS} \simeq 1.45$ ,  $a_S = 12/23$ ,  $a_T = -4/23$ .

operator list:Kuno-Okada, +CiriglianoKitanoOTuzon **Operator basis**  $m_{ au} 
ightarrow m_W$ :  $\sim 90$  **operator** symmanChengLiMatis

Add QCD×QED-invar operators, representing all 3,4 point interactions of  $\mu$  with e and *flavour-diagonal* combination of  $\gamma, g, u, d, s, c, b$ .  $Y \in L, R$ .

 $(\overline{e}\gamma^{\alpha}P_{Y}\mu)(\overline{e}\gamma_{\alpha}P_{Y}e) \qquad (\overline{e}\gamma^{\alpha}P_{Y}\mu)(\overline{e}\gamma_{\alpha}P_{X}e)$  $(\overline{e}P_Y\mu)(\overline{e}P_Ye)$ dim 6 $(\overline{e}\gamma^{\alpha}P_{Y}\mu)(\overline{\mu}\gamma_{\alpha}P_{X}\mu) \qquad (\overline{e}\gamma^{\alpha}P_{Y}\mu)(\overline{\mu}\gamma_{\alpha}P_{X}\mu)$  $(\overline{e}P_Y\mu)(\overline{\mu}P_Y\mu)$  $(\overline{e}\gamma^{\alpha}P_{Y}\mu)(\overline{f}\gamma_{\alpha}P_{Y}f) \qquad (\overline{e}\gamma^{\alpha}P_{Y}\mu)(\overline{f}\gamma_{\alpha}P_{X}f)$  $(\overline{e}P_Y\mu)(\overline{f}P_Xf) \qquad f \in \{u, d, s, c, b, \tau\}$  $(\overline{e}P_Y\mu)(\overline{f}P_Yf)$  $(\overline{e}\sigma P_Y\mu)(\overline{f}\sigma P_Yf)$  $\frac{1}{m_t} (\overline{e} P_Y \mu) G_{\alpha\beta} G^{\alpha\beta}$  $\frac{1}{m_t} (\overline{e} P_Y \mu) G_{\alpha\beta} \widetilde{G}^{\alpha\beta}$ dim 7 $\frac{1}{m_t} (\overline{e} P_Y \mu) F_{\alpha\beta} F^{\alpha\beta} \qquad \frac{1}{m_t} (\overline{e} P_Y \mu) F_{\alpha\beta} \widetilde{F}^{\alpha\beta} \qquad \dots zzz\dots but \sim 90 \text{ coeffs!}$  $(P_X, P_Y = (1 \pm \gamma_5)/2)$ , all operators with coeff  $-2\sqrt{2}G_FC$ .

### But 3 processes, $\sim 100$ operators $\Rightarrow$ zoo of flat directions?

DKunoYamanaka

Count constraints: (write 
$$\delta \mathcal{L} = C_{Lorentz,XY}^{flavour} / v^n \mathcal{O}_{Lorentz,XY}^{flav}$$
,  $X, Y \in \{L, R\}$ )

 $\mu \rightarrow e\gamma$ :  $BR(\mu \rightarrow e\gamma) = 384\pi^2(|C_{D,L}|^2 + |C_{D,R}|^2) \Rightarrow 2 \text{ constraints}$ 

 $\mu \rightarrow e\bar{e}e$ : (e relativistic  $\approx$  chiral, neglect interference between  $e_L, e_R$ )

$$BR = \frac{|C_{S,LL}|^2}{8} + 2|C_{V,RR} + 4eC_{D,L}|^2 + (64\ln\frac{m_{\mu}}{m_e} - 136)|eC_{D,L}|^2 + |C_{V,RL} + 4eC_{D,L}|^2 + \{L \leftrightarrow R\} \implies 6 \text{ more constraints}$$

 $\mu A \rightarrow eA : (S_A^N, V_A^N = \text{integral over nucleus A of } N \text{ distribution} \times \text{lepton wavefns, different for diff. } A)$   $BR_{SI} \sim Z^2 |V_A^p \tilde{C}_{V,L}^p + S_A^p \tilde{C}_{S,R}^p + V_A^n \tilde{C}_{V,L}^n + S_A^b \tilde{C}_{S,R}^n + D_A C_{D,R}|^2 + |L \leftrightarrow R|^2$   $BR_{SD} \sim |\tilde{C}_A^N + 2\tilde{C}_T^N|^2$ 

SI bds on Au, Ti, (+ SD on ?Ti, Au?)  $\Rightarrow 4 + 2$  more constraints future: improved theory, 3SI+2SD targets  $\Rightarrow 6+4$  constraints

#### is 12-20 constraints on $\sim 100$ operators a problem?