# Neutrino clusters and neutrino stars

A. Yu. Smirnov

Max-Planck Institut fur Kernphysik, Heidelberg, Germany

Georg Raffelt fest, November 11, 2022, Munchen



### Neutrino bound states and systems

*M. Markov, Phys.Lett. 10, 122 (1964): "Neutrino superstars"* Massive neutrinos + gravity, analogy with neutron stars,  $n \rightarrow v$ 

$$R = \sqrt{\frac{8\pi}{G_N}} \frac{1}{m_v^2} \qquad M \sim 1/m_v^2 \qquad Oppenheimer - Volkoff limit$$

For  $m_v = 0.5$  MeV:  $M = 4 \ 10^6 M_{sun}$ ,  $R = 4 \ 10^{12}$  cm Now  $m_v = 0.05$  eV:  $M = 4 \ 10^{20} M_{sun}$ ,  $R = 5 \ 10^{26}$  cm

### R. D.Viollier et al, Phys.Lett. B306, 79 (1993) ,....

```
Gravity, m_v = (10 - 100) \text{ keV}:
M = (10<sup>8</sup> - 10<sup>10</sup>) M<sub>sun</sub>, R = (10<sup>14</sup> - 10<sup>16</sup>) cm
- essentially, warm DM
```

Heavy sterile neutrinos?

### Neutrino bound states and systems

G. J. Stephenson et al, Int. J. Mod. Phys. A13, 2765 (1998) ...

Long range scalar (Yukawa) forces with coupling y,  $m_v = 13 \text{ eV}$ , motivated by <sup>3</sup>H exp. anomaly, negative m<sup>2</sup>

$$G_{\rm N} \rightarrow G_{\rm v} = \frac{\gamma^2}{4\pi \, {\rm m_v}^2}$$

Analogy with hadrodynamics, Thomas - Fermi approximation ...

Equations for final configurations  $\rightarrow$  density profiles, Formation of clouds in the Universe.

$$R = 4\sqrt{2}\pi \frac{1}{y m_v}$$

M = (10<sup>8</sup> - 10<sup>10</sup>) M<sub>sun</sub>, R = 10<sup>13</sup> cm, central density:  $10^{15}$  cm<sup>-3</sup>

Equation for effective mass of neutrino m\* in the scalar field

# **Dark Matter Nuggets**

M.B. Wise and Y. Zhang, Phys. Rev. D 90, 055030 (2014), JHEP 02, 023 (2015)

Dirac fermions with  $m_D \sim 100$  GeV and coupling constant with scalar  $\alpha_{\phi} = 0.01 - 0.1$   $\longrightarrow$  Applications to asymmetric dark matter

Description is similar to that by Stephenson et al:

System of equations for scalar field and Fermi momentum of DM

Solved numerically in

M.I. Gresham, H.K. Lou and K.M. Zurek, Phys. Rev. D96, 096012 (2017), Phys. Rev. D 98, 096001 (2018)

Dependences of properties of nuggets on N and  $m_{\phi}$ :

With increase of N radius R(N) first decreases, reaches minimum and then increases. The increase is in the relativistic regime

In relativistic case R >  $1/m_{\phi}$  is possible - "saturation" regime



A.Y.S, and Xun-Jie Xu, JHEP 08 (2022) 170, 2201.00939 [hep-ph]

Neutrino clusters:

Physics and Equations Final configurations Formation and applications

# Physics and equations



### Interaction. Equations for fields

$$L = \dots y \overline{v} v \phi - \frac{1}{2} m_{\phi}^2 \phi^2 - m_{v} \overline{v} v + \dots$$

single neutrino type

where  $\phi$  - scalar with mass  $m_{\phi}$  $m_{v}$  - neutrino mass y - effective coupling pheno bound y < 10<sup>-7</sup>

Equations of motion:

$$i \not d v - m^* v = 0$$
(\*)  
(d<sup>2</sup> + m<sub>\phi</sub><sup>2</sup>) \phi + y \overline{v} v = 0   
(\*\*)

 $m^* = m_v + y\phi$  - effective mass of neutrino in medium V = y\phi - potential

# 

neutrino gas with density n and momentum distribution f(p, t, x), and long range attractive forces due to Yukawa interactions

Expectation value:

$$\langle \overline{v}v \rangle = n^* = \frac{1}{2\pi^2} \int p^2 dp \frac{m^*}{E_p} f(p)$$

$$m^* = m_v + y\phi$$

effective neutrino mass in the field

usual density

Non-relativistic limit,  $p \ll m^*$ ,  $m_v$ :  $n^* \rightarrow n$ 

Relativistic case, p>> m\*: chiral suppression: n\* << n

- The field (potential) is suppressed, attractive force is suppressed
- $\rightarrow$  difference from gravity no collapse

 $E_{p} = \sqrt{p^{2} + m^{*2}}$ 

# **Equations for neutrino stars. Equilibrium condition**

Ground state - degenerate neutrino gas. Static configuration



In non-relativistic case: Hydrostatic equilibrium:

F<sub>deg</sub> (r) = - F<sub>yuk</sub> (r)

where 
$$F_{deg}(r) = dP_{deg}(r)/dr$$

In general, chemical equilibrium:

## Non-relativistic case

In non-relativistic case: Hydrostatic equilibrium

$$F_{deg}(r) = -F_{yuk}(r)$$

$$F_{deg}(r) = \frac{(6\pi^2)^{2/3}}{5 r m_v} n(r)^{5/3} \qquad F_{yuk}(r) = -\frac{\gamma^2}{4\pi r^2} n(r) N(r)$$

. . . . . . . .

Reduced to the Lane-Emden equation (after differentiation over r)

$$\frac{1}{r^2} \frac{d}{dr} \left( r^2 \frac{dn^{2/3}}{dr} \right) = -\kappa y^2 n$$

 $\kappa = \frac{2 m_v}{(6\pi^2)^{2/3}} \qquad \gamma = 3/2 - \text{solution with finite radius}$ 

Boundary condition in the center:  $n(0) = n_0 \text{ or } p_F(0) = p_{F0}$ 

# **Relativistic case**

With increase of N the Fermi momentum increases as  $p_{F0}$  ~  $N^{2/3}$  Transition to relativistic case at  $p_{F0}$  > m\*



- generalization of the Hydrostatic equilibrium.

Indeed, 
$$F_{yuk}(r) = dV/dr = y d\phi/dr = \frac{dm^*}{dr}$$

## **Relativistic equations**

Static case

$$(\nabla^{2} - m_{\phi}^{2}) m^{*} = y n^{*}$$

$$m^{*} \frac{dm^{*}}{dr} = -p_{F} \frac{dp_{F}}{dr}$$

$$(*)$$

$$n^{*} = \frac{1}{2\pi^{2}} \int_{0}^{p_{F}} \frac{m^{*}}{\sqrt{p^{2} + m^{*2}}} p^{2} dp$$

$$(*)$$

$$from chemical equilibrium condition$$

Equations for m<sup>\*</sup> (instead of  $\phi$ ) and  $p_F$  (neutrino density)

#### Boundary conditions:

 $p_F(0) = p_{F0}$  - external (given) parameter  $m^*(0) = m^*_0$  m $^*_0$  is tuned in such a way that  $at r \rightarrow infty$  m $^* \rightarrow m_v$ 

In non-relativistic case the system (\*) can be reduced to the Lane-Emden equation

## Non-degenerate case \*

$$f(p) = \frac{1}{exp(p/T) + 1}$$

$$n = \frac{I_3}{2\pi^2} T^3$$

Results from degenerate case (upto numerical coefficients) by substitution

 $p_{FO} \rightarrow T$ 

Radius is bigger:  $R_T = 1.9 R_{deg}$ 

# Final stable configuration

### **Density distribution**

Density and effective density distributions for different values of  $p_{F0}/m_{\rm v}$  (corresponding values of N indicated)



# **Dependence on mass of a mediator**



Radius (Rym $_{v}$ ) as function of number of neutrinos for different values of m $_{\phi}$ /ym $_{v}$ 

Radius of interaction  $r_{\phi} = 1/m_{\phi}$ 

 $\bigstar$  Lover bound on N, for non-zero  $m_{\phi}$  which increases with  $m_{\phi}$ 

 $\bigstar$  Minimal radius: increases with  $\rm m_{\phi}$  and shifts to larger N

### With increase of $m_{\phi}$ :

in non-relativistic range binding effect becomes weaker, R increases

in relativistic range -R decreases as a result of shift of minimum

### **Properties of neutrino clusters**



Fermi momentum in center of star as function of number of neutrinos for different values of  $m_{\phi}/m_{v}$ 

With increase of  $\mathbf{m}_{\! \varphi}$ 

Maximum of  $p_{\text{FO}}\,$  increases and shifts to larger N

Absolute maximum of  $p_{FO}$  and therefore central density are determined by value of neutrino mass

$$n_v^{max} = 4 \ 10^8 \ cm^{-3} \left( \frac{m_v}{0.1 \ eV} \right)$$

## Strength of interaction. Bounds. Radius

Definition

$$S_{\phi} = \frac{y^2 m_v^2}{m_{\phi}^2}$$

Numerically: stable solutions exist for  $S_{\phi}^{-1/2} < 0.12$  rightarrow  $S_{\phi} > 70$ 

Radius of cluster R can be smaller, comparable or bigger than radius of interactions  $R_{\varphi}$  = 1/m\_{\varphi}

 $\frac{R}{R_{\phi}} = Y S_{\phi}^{-1/2} \qquad Y = Rym_{v} - vertical axis value in Fig. for R$ 

E.g. for  $S_{\phi}^{-1/2} = 0.1$ , Y = (55 - 100) (in relativistic range)

# Formation of clusters and applications



### **Maximal density and fragmentation**

 $n_{v0}^{max}$  depends on neutrino mass only

Expansion of uniform cosmic neutrino background  $\rightarrow$  decrease of density and temperature

General picture:

When  $n_v(T) \sim n_{v0}^{max}$  fragmentation may start

After separation the pre-clusters may shrink and their central density – increase. Therefore

Fragmentation density

 $n_{frag}$  <  $n_{v0}^{max}$  ~  $10^9$  cm<sup>-3</sup> for  $m_v$  = 0.1 eV

This density is realized in the epoch

$$z_{f} + 1 = \left(\frac{n_{frag}}{n_{v}(0)}\right)^{1/3} \sim 200$$

 $\rightarrow$  fragmentation may start when p\_v ~ m\_v

# **Evolution of the effective mass**

 $m^* = m_v + y\phi$ 

For uniform static configuration equation of motion gives

$$\phi = -\frac{y \langle \overline{v}v \rangle}{m_{\phi}^2} = -\frac{y n^*}{m_{\phi}^2}$$
$$m^* = m_v - \frac{y^2 n^*(m^*)}{m_{\phi}^2}$$

For thermal distribution

$$m^* = m_v - m^* \frac{y^2 T^2}{24 m_{\phi}^2}$$

T<sub>rel</sub> /m<sub>v</sub> =  $(24/S_{\phi})^{1/3}$ 

### For different values of strength



### Energy of the system per neutrino

 $\frac{\varepsilon_{\alpha} = \rho_{\alpha} / n_{v}}{\rho_{\alpha} - \text{ energy density in } \alpha \text{ component}}$ 

in the uniform static medium (all derivatives are zero)

### Scalar field

$$\rho_{\phi} = \frac{1}{2} m_{\phi}^{2} \phi^{2} = (m^{*} - m_{v})^{2} \frac{m_{\phi}^{2}}{2 y^{2}}$$

$$\varepsilon_{\phi} = m_{v} - \begin{cases} 1/\chi & \text{relativistic limit} \\ \chi/4 & \text{non-relativistic limit} \end{cases}$$

$$\chi \equiv \frac{S_v I_3}{\pi^2} \left( \frac{T}{m_v} \right)^3$$
$$I_3 = 1.80$$

### Neutrinos

$$\varepsilon_v = \langle E_v \rangle = \langle p^2 + m^{*2} \rangle$$

$$\varepsilon_{v} = \begin{cases}
3.15T & relativistic limit \\
m_{v} & non-relativistic limit
\end{cases}$$

**Total energy**  $\varepsilon_{tot} = \varepsilon_v + \varepsilon_\phi$ 

# **Evolution of energies. Dip**



Dependence of energy per neutrino on T/m\_ for different values of m\_/ym\_  $\epsilon_{\phi}$  - dashed,  $\epsilon_{\nu}$  - dotted,  $\epsilon_{tot}$  - solid

For large enough strength

 $S_{\phi} > S_{\phi}^{min} \sim 600$ 

the dip develops in  $\epsilon^{\text{tot}}(T)$  dependence with

 $\varepsilon_{tot} < m_{v}$ 

at T ~  $m_{\rm v}/3$  , when neutrinos become non-relativistic

(\*)

(\*) implies existence of bound state with ( $m_v - \epsilon_{tot}$ ) being the binding energy

With increase of strength the minimum of dip shifts to lower T and becomes lower

# **Instability and Fragmentation**

Below  $T_{dip}$  further expansion and cooling require increase of energy of the system  $\rightarrow$  fragmentation without decrease of T and density



 $T_{\boldsymbol{U}}$  - temperature in the Universe

Fragmentation stars at  $z_f \sim 200$ : corresponds to maximal density

The size of the Universe that epoch  $D_U$  (200) = 20 Mpc

The radius of the biggest structures:  $R_f \sim D_U(200)/4 = 5 \text{ Mpc}$ Distance between structures:  $d_f(200) \sim D_U(200)/2 = 10 \text{ Mpc}$  $N_f = 1.2 \ 10^{85}$ ,  $M_f = 4 \ 10^{17} M_{sun}$ Present size of voids  $d(0) \sim z_f d_f = 2000 \text{ Mpc}$ 

## **Parameters of clusters**

The biggest possible structures which would satisfy the energy conditions correspond to  $m_{\rm b}$  ~ 3  $10^{-32}~eV$ 

If  $m_{\phi} \gg 3 \ 10^{-32} \text{ eV}$  such structures are not stable  $\rightarrow$  further fragmentation occurs down to R ~ 1/  $m_{\phi}$ 

For 
$$m_{\phi} / ym_{v} = 10^{-2}$$
  

$$\frac{R}{10 \text{ kpc}} \frac{y}{1.4 \text{ } 10^{-26}} \frac{m_{\phi}, eV}{1.4 \text{ } 10^{-30}}$$

$$\frac{1}{10 \text{ km}} \frac{1.4 \text{ } 10^{-22}}{4 \text{ } 10^{-11}}$$

If formation starts at z = 200, voids are 200 bigger than clusters

## **Observational consequences**

Further disintegrations : other perturbations, DM halos, gravity,

Ratio of distances between clusters d and radiuses of clusters  $d/R = 10^{-2} d_0 m_v y^2 N^{2/3}$ 

 $d_0$  - distance between neutrinos without clustering d/R ~ 100 does not depend on y for stable configuration

Affects detection of relic neutrinos depending on sizes of stars

Influence Early structure formation?

### Strength of interactions and formation of clusters

 $S_{\phi} = \frac{y^2 m_v^2}{m_{\phi}^2}$ 



Similar to formations of DM halos

# In conclusion



Neutrino interaction with light or massless scalar boson with y < 10<sup>-7</sup> and  $m_{\phi}$  < 10<sup>-10</sup> eV can lead to formation of stable bound systems of neutrinos: stars, clusters

Due to chiral suppression of attraction, existence of relativistic regime in which dependence of characteristics, is opposite to the non-relativistic case. Absence of collapse. Final stable configurations: degenerate (close to degenerate)

Fermi gas with the following features

- Existence of minimal radius determined by 1/y m,
- in relativistic regime R can be bigger than radius
  - of interactions  $R_{\phi} = 1/m_{\phi}$
- the lower bound on N, for a given strength
- upper bound on central density

Formation: via development of instabilities and fragmentation of the uniform relic neutrino background at z < 200

Affects programs of detection of relic neutrinos





# Global characteristics of stars R

$$m_{\phi} = 0$$

Considering uniform sphere  $N = \frac{4\pi}{3} R^3 \frac{p_{F0}^3}{6\pi^2} V n$ 

Radius

$$R = \frac{20}{y_{\sqrt{m_v p_{F0}}}}$$

from hydrostatic equilibrium

At  $p_{FO} \sim m_v$  (transition between non-relativistic and relativistic cases):  $R \sim \frac{20}{v m_{...}} \sim R_{min}$  (as in the gravitational case)

In terms of N:  $R = \frac{90.4}{v^2 m_e} \frac{1}{N^{1/3}}$  radius decreases with increase of N

Fermi momentum and density in the center

 $p_{FO} = 0.0485 m_v y^2 N^{2/3}$ 

 $n_{v0} = 2 \ 10^{-6} \ m_v^3 y^6 \ N^2$ 

 $\rightarrow$  fast increase with y and m<sub>v</sub>

# **Ground state**

Degenerate Fermi gas distribution of neutrinos over p

$$f(p) = \begin{cases} 1, & p < p_F \\ 0, & p > p_F \end{cases} \qquad p_F - Fermi momentum$$

$$n = \frac{p_F^3}{6\pi^2}$$
$$P_{deg} = \frac{p_F^5}{30\pi^2 m_v}$$

## Equation for m\*

static case

n

$$(\nabla^2 - m_{\phi}^2) (m^* - m_{v}) = \gamma n^* (m^*)$$
  $n^* = \frac{1}{2\pi^2} \int_0^{p_F} \frac{m^*}{\sqrt{p^2 + m^{*2}}} p^2 dp$ 

Equations for  $m^*$  (instead of  $\phi$ )

G. J. Stephenson, et al

Boundary conditions:

$$m^{*}(0) = m^{*}_{0}$$
  
r > infty  $m^{*} \rightarrow m_{v}$ 

## **Characteristics of nu clusters**

For fixed N

$$R \sim \frac{1}{y^2 m_v}$$





 $\begin{array}{ccc} \nu\nu & \text{annihilation} & \nu\overline{\nu} & \text{annihilation} \\ (\text{only for Majorana }\nu) & (\text{for Dirac/Majorana }\nu) \\ \hline \\ \nu & & & & & \\ \hline \\ \nu & & & & & \\ \hline \\ \nu & & & & & \\ \hline \\ \nu & & & & & \\ \hline \end{array}$ 

 $\boldsymbol{\phi}$  - bremstrahlung

### **Formation of neutrino stars**

From the cosmological neutrino background

For y < 10<sup>-7</sup> cooling mechanisms:  $\phi$  -emission (bremstrachlung), annihilation  $vv \rightarrow \phi \phi$ , are negligible Formation of v-stars in analogy to formation of DM halos?

In terms of effective neutrino mass  $m^* = m_v + y\phi$ 

At early epoch (large n) m\* <<  $m_{\rm v}$ 

G. J. Stephenson ,et al.

With decrease of density  $m^* \rightarrow m_v$  due to decrease of kinetic energy  $\rightarrow$  formation of degenerate neutrino gas