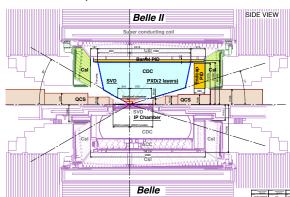
Belle/Belle II Experiment

Construction of the Belle II Pixel-Vertex Detector

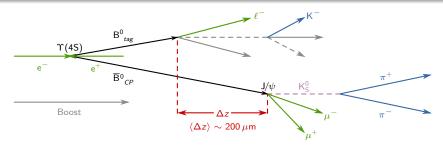
Martin Ritter

IMPRS/GK Young Scientist Workshop at Ringberg Castle 26 July 2010

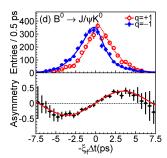
(Werner-Heisenberg-Institut)


Belle/Belle II Experiment Pixel Vertex Detector PXD Overview Mechanical Tests Conclusions

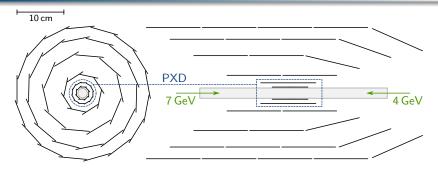
Mechanical Tests


Belle/Belle II Experiment

- \triangleright asymmetric e⁺e⁻ experiment mainly at the $\Upsilon(4S)$ resonance (10.58 GeV)
- ► KEKB peak luminosity of 2.11×10^{34} cm⁻²s⁻¹ (world record)
- ▶ $1023 \, \text{fb}^{-1}$ integrated luminosity since 1999 (772 million $B\overline{B}$ pairs)
- upgrade to SuperKEKB/Belle II 2010-2013 (target luminosity: $8 \times 10^{35} \, \text{cm}^{-2} \text{s}^{-1}$)



Vertex finding

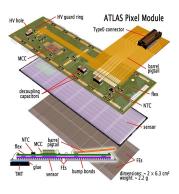


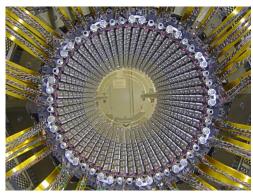
Vertex finding is the Key to CP-Violation measurement:

- ► CP violation is time dependent $(\langle \Delta t \rangle \sim 1 \, \text{ps})$
- boost translates lifetime difference into vertex distance ($\langle \Delta z \rangle \sim 200 \, \mu \text{m}$)
- precise silicon vertex detector needed

Belle II Vertex Detector

Will consist of two mechanically independent subdetectors:


Pixel Vertex Detector


- ▶ two layer DEPFET pixel detector
- very low material budget (0.14% X₀ per layer)
- mounted on beampipe
- ▶ 40 sensor modules

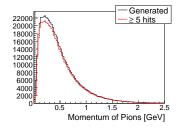
Strip Vertex Detector

- four layer double sided strip detector
- forward parts will be slanted
- attached to CDC
- ▶ 187 sensor modules

Standard Silicon Detector

- multiple sensitive modules are glued on support ribs which provide mechanical stability
- ▶ support, cooling and cables inside acceptance region
- too much material for Belle (10 GeV CM energy)

Belle/Belle II Experiment Pixel Vertex Detector PXD Overview Mechanical Tests Conclusions

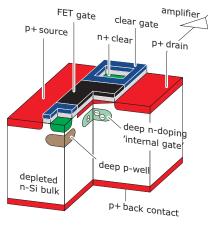

PXD Mechanical Design

Vertex resolution is the key to CP-Violation

low material budget required to minimize energy loss and multiple scattering, leading to a different design compared with existing Silicon detectors

- silicon sensors self supporting
- \blacktriangleright sensitive area will be thinned down to 75 $\mu\mathrm{m}$
- almost no additional material inside of the acceptance

Silicon has good mechanical properties (high tensile strength, no plastic deformation, good elasticity)

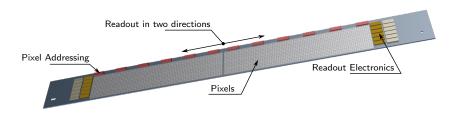

But:

Silicon is very brittle: Once there is a small crack, this crack can grow very easily

No prior experience with this design

additional tests required to make sure nothing breaks

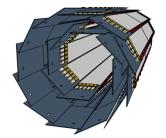
DEPFET Pixel Detector


The DEPFET Principle

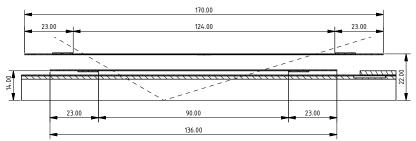
- ► FE-Transistor on each pixel
- doped areas beneath transistor form electron trap
- traversing charged particles produces electron hole pairs
- electrons get trapped and act as gate
- integrating device, always active
- collected charge has to be cleared after readout

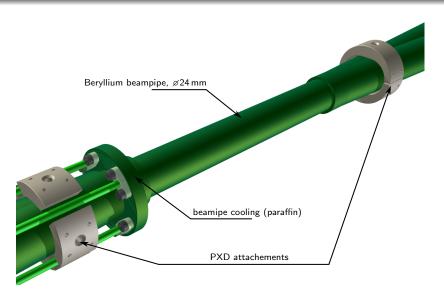
Additional talks on DEPFET on Thursday by Christian Koffmane and Andreas Ritter

Pixel Sensor

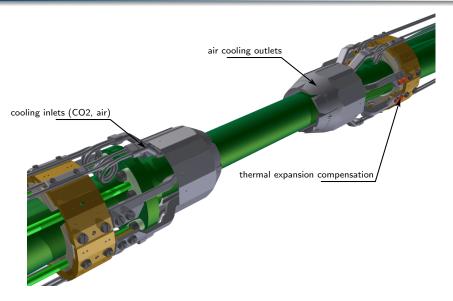

A sensor consists of many pixels in a 2D grid on a silicon module

- some additional electronics needed for addressing and readout of the pixels
- pixels are read out to both sides: one side per half

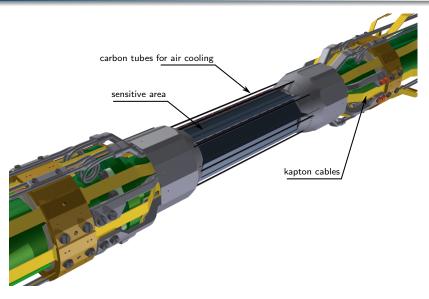

Sensor has to be cooled

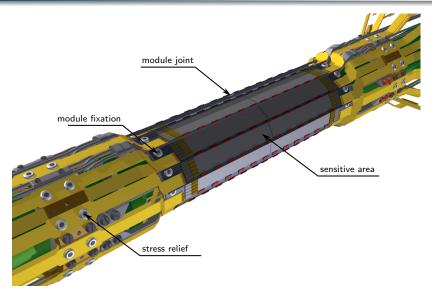

- active area produces 0.5 W of heat
- addressing chips produce 0.5 W of heat
- readout electronics produce 8 W of heat per side

Layout of the PXD



- ▶ PXD consists of 20 Modules in 2 layers
- each module has 1600 × 250 pixels (8 M pixel in total)
- pixel size of $50 \times 50 \,\mu m$ for the inner layer and $75 \times 50 \,\mu \text{m}$ in the outer layer
 - each pixel readout with 8bit ADC
- total readout time of 20 μ s

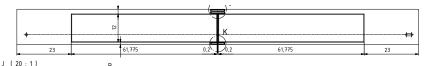



Mechanical Tests

PXD Support Inner layer and carbon tubes

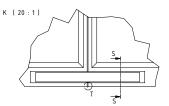
PXD Support Complete PXD

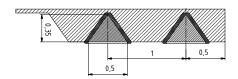
PXD Overview


PXD Mockup

PXD Overview

Module Glueing


Belle/Belle II Experiment



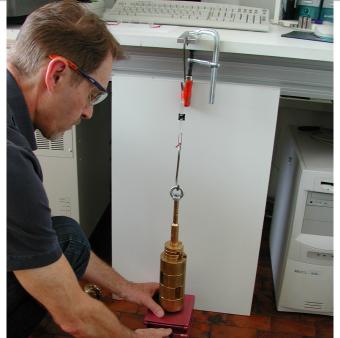
Reinforced front face glueing

- reinforced using ceramic "prisms"
- almost no additional material
- ightharpoonup only \sim 500 μ m of dead area

Belle/Belle II Experiment Test Glueing

Test glueing of mechanical dummies thinned to 50 $\mu \mathrm{m}$ to verify design

Tensile Strength Test



Tensile strength test carried out:

- ends of the module fixated
- increasing force applied to pull the pieces apart
- \blacktriangleright solid 450 μ m silicon tested to 7 kg
- lacktriangle unthinned front face glueing achieved $\sim 6\,\mathrm{kg}$

Long time test (unthinned, 3 kg) still ongoing: 6 weeks already achieved

Belle/Belle II Experiment Pixel Vertex Detector PXD Overview Mechanical Tests Conclusions

Martin Ritter

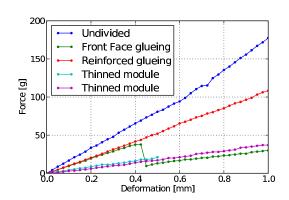
Strengh Test Results

- module broke just above 5 kg
- ▶ glue more or less still intact
- silicon seems to be weaker then glue (for $50 \,\mu\text{m}$)
 - ► long time test with 3 kg broke after few hours: silicon again the weak part

Bowing Strength Test

Additional test to study deformation perpendicular to module axis

- module screwed to endplate on both sides
- one endplate fixed, one free to slide along module axis
- applying pressure to module center (0.025 mm every 15 seconds) up to 1 mm deformation



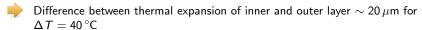
Bowing Test Results

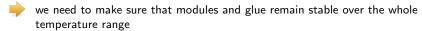
Belle/Belle II Experiment

- ▶ undivided, inner layer dummy broke at deformation of 1.445 mm (equivalent to a force of 315 g)
- front face glued outer layer module:
 - glueing broke at 0.4 mm deformation (37.7 g)
 - ▶ half modules remained in good order, tested to 1 mm deformation (\sim 30 g)
- reinforced glueing successfully tested up to 1 mm deformation (110 g)

- thinned down outer layer dummy tested up to 1 mm deformation (35 g)
- cracks in thinned area: no growing visible

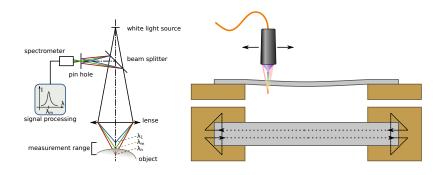

Thermal Mechanical Tests


Goal: Verify Mechanical Design


Baseline: Modules screwed to endflange to ensure good thermal contact

and positional stability

One Issue: Internal stress due to thermal expansion




Precise position/distance measurement over "large" temperature range needed.

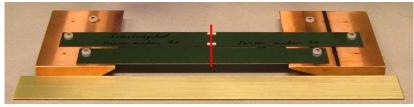
Confocal Chromatic Distance Sensor

- high resolution ($\sim 1\,\mu{\rm m}$ axial, $\sim 10\,\mu{\rm m}$ lateral)
- contact free measurement
- almost independent of material (max. slope depends on reflectivity)
- passive sensor: large temperature range possible
- high measurement rate up to 2 kHz

The Setup

We have prepared a setup to profile modules during temperature cycling

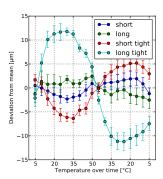
• granite reference plane with $\pm 2 \,\mu m$


- planarity

 ▶ range of 200 mm × 50 mm in XY-Plane,
- $< 2 \,\mu$ m repeatability
- lacktriangle Z-range of 3 mm, resolution of $< 1\,\mu\mathrm{m}$
- possibility to adjust Z-position by 50 mm
- ▶ temperature Range from $0\,^{\circ}\text{C}$ to $50\,^{\circ}\text{C}$

But: No Results Yet

- still calibrating
- ▶ technical problems with climate chamber


First tests

Obtained test system to check performance.

But: only measurement in one direction

- measured height of module surface
- ightharpoonup covered $\Delta T = 45 \,^{\circ}\text{C}$
- first results: most changes are from movement of the stage
- no significant movement after preliminary calibration
- additional run with tightened screws
 - movement visible, but not yet understood
 - silicon damaged due to high torque

Mechanical Tests

Conclusions

Belle II will be major upgrade to Belle

- Vertex finding is paramount for CP Violation measurements
- ▶ low material budget for vertex detector required due to low momenta

The DEPFET Pixel Vertex Detector can satisfy all requirements

- small size allows to keep support out of acceptance
- silicon as "self supporting structure"
- tests needed to verify feasibility
- so far very promising results

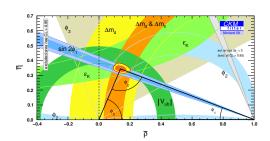
PXD Overview

CP Violation

- CP violated in weak interactions.
- represented by non-vanishing complex phase in the weak mixing matrix (CKM model, Nobel Prize 2008 for Kobayashi & Maskawa)

$$\begin{pmatrix} |\mathbf{d}'\rangle \\ |\mathbf{s}'\rangle \\ |\mathbf{b}'\rangle \end{pmatrix} = \underbrace{\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}}_{\mathbf{C}_{CKM}} \begin{pmatrix} |\mathbf{d}\rangle \\ |\mathbf{s}\rangle \\ |\mathbf{b}\rangle \end{pmatrix}$$

Precision Measurement of CP-Violation


- verification of the CKM model
- search for new sources of CP Violation New Physics
- ▶ B mesons show large CP-Violation, well suited for CP measurements
- ▶ high statistics and precision needed to challenge SM

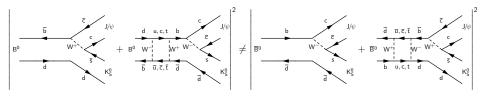
Unitarity Triangle

- unitarity of CKM matrix leads to column constraints $\sum_k V_{ik} V_{ik}^* = 0$
- triangles in complex space
- almost degenerate in Kaon system, large angles in B meson system

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

$$\mathcal{O}(\lambda^3) \quad \mathcal{O}(\lambda^3)$$

$$\begin{split} \overline{\rho} &= \left(1 - \frac{\lambda^2}{2}\right) \rho & \overline{\eta} &= \left(1 - \frac{\lambda^2}{2}\right) \eta \\ \phi_1 &= \arg\left(-\frac{V_{cd}\,V_{cb}^*}{V_{td}\,V_{tb}^*}\right) & \phi_2 &= \arg\left(-\frac{V_{td}\,V_{tb}^*}{V_{ud}\,V_{ub}^*}\right) \\ \phi_3 &= \arg\left(-\frac{V_{ud}\,V_{ub}^*}{V_{cd}\,V_{cb}^*}\right) \end{split}$$


CP Observables

time dependent decay asymmetry

$$a_{CP}(t) = \frac{\Gamma\left(\overline{\mathsf{B}}^{0} \to f_{CP}; t\right) - \Gamma\left(\mathsf{B}^{0} \to f_{CP}; t\right)}{\Gamma\left(\overline{\mathsf{B}}^{0} \to f_{CP}; t\right) + \Gamma\left(\mathsf{B}^{0} \to f_{CP}; t\right)}$$

3 possible contributions

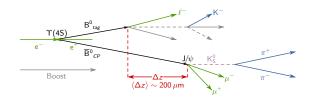
- ► CP-Violation in decay (direct)
- CP-Violation in mixing (indirect)CP-Violation by interference of
- mixing and decay (mixing induced)

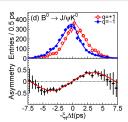
For B mesons, contributions from indirect CP-Violation are negligible

Measurement of CP-Violation

time dependent decay asymmetry

$$a_{CP}(t) = rac{\Gamma\left(\overline{\mathsf{B}}^{0}
ightarrow f_{CP}; t
ight) - \Gamma\left(\mathsf{B}^{0}
ightarrow f_{CP}; t
ight)}{\Gamma\left(\overline{\mathsf{B}}^{0}
ightarrow f_{CP}; t
ight) + \Gamma\left(\mathsf{B}^{0}
ightarrow f_{CP}; t
ight)}$$

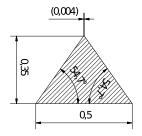

Experimental challenging

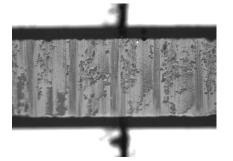

- ▶ lifetime of B mesons is 1.5 ps
- ▶ flavour of B meson has to be known

Solution

- Υ(4S): coherent B-meson pair production
- one B to determine flavour (tag side), other B for CP measurement (CP side)
- boost system using asymmetric beam energies

$$t o \Delta t = rac{\Delta z}{\langle eta \gamma
angle c}$$

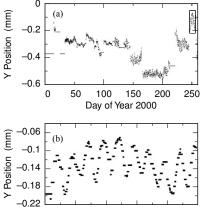




Ceramic Reinforcements

Initial batch of ceramic reinforcements received

- fitting very well into grooves
- \blacktriangleright manufactured within 42 μ m to specification


Alignment

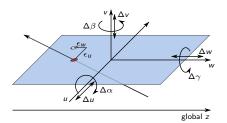
Required spatial resolution: $\approx 10 \, \mu \mathrm{m}$

PXD + SVD

- pixel-detector mounted directly on the beampipe
- double-sided strip-detector attached to the CDC
- mechanically independent subsystems
- frequent and large relative movements possible

frequent, time-dependent alignment needed

248 250 252 254 256 Day of Year 2000

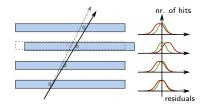

Global alignment of the BABAR SVT

246

4-2001

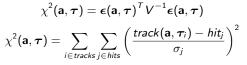
8583A54

Track-based Alignment

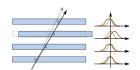

Necessary to determine absolute position of every detector module

- wrong positions will distort/degrade residual distribution
- minimize residuals by adjusting module position
- ▶ 6 degrees of freedom per module (3 translation + 3 rotation)

Residual ϵ : Distance hit \Leftrightarrow track


ideal: residuals normal distributed mean 0, width σ_r

but: real wafer position not known assembly precision $\sim 100\,\mu\mathrm{m}$, no guaranteed time stability.



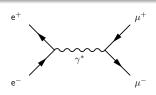
Track-based Alignment

- ▶ a = alignment parameters
- ightharpoonup au = track parameters

Mechanical Tests

Solution for linearized χ^2

$$\underbrace{\left(\mathbf{J}^{\mathsf{T}}\mathbf{V}^{-1}\mathbf{J}\right)}_{C} \begin{pmatrix} \Delta \mathbf{a} \\ \delta \boldsymbol{\tau} \end{pmatrix} = \underbrace{\left(\mathbf{J}^{\mathsf{T}}\mathbf{V}^{-1}\boldsymbol{\epsilon}(\mathbf{a}_{0}, \boldsymbol{\tau}_{0})\right)}_{\mathbf{b}}$$

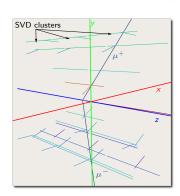

local alignment:

- neglect correlations between modules
- keep track parameters fixed
- $\triangleright \chi^2$ -function per module
- ► small matrices (6 × 6)
- iteration needed to account for correlations

global alignment (Millepede):

- \triangleright one global χ^2 -function
- all correlations taken into account
- "large" set of equations $(1476 \times 1476 \text{ for Belle},$ similar for Belle II)
- widely used program package available

Alignment with $e^+e^- \rightarrow \mu^-\mu^+$


Goal

Implementation of a new alignment procedure for the Belle SVD2 using mainly muon pairs from e⁺e⁻ annihilation as preparation for Belle II

high statistics

$$\begin{split} \sigma(\mathrm{e^+e^-} &\to \mu^+\mu^-) \approx 0.77\,\mathrm{nb} \\ &\sim 15\,\mathrm{s^{-1}} \ @\ 2 \times 10^{34}\,\mathrm{cm^{-2}s^{-1}} \\ &\sim 600\,\mathrm{s^{-1}} \ @\ 8 \times 10^{35}\,\mathrm{cm^{-2}s^{-1}} \end{split}$$

- large transverse momentum $p_t \gtrsim 2 \,\mathrm{GeV}$
- back to back in center of mass system
- not back to back in Lab system (asymmetric energies, crossing angle)
- fit tracks on same vertex, constraining energy and momentum to boost 4-vector.

