Trigger-Hodoscope for Studies of Drift Tubes at High γ -Background

Stefanie Adomeit

LMU München

29th July, 2010

Outline

- Expected Background Rates for Drift Tubes @ ATLAS
- 2 Drift Tubes Performance Studies
- 3 Trigger Hodoscope for High γ -Background
- 4 Muons in $t\bar{t}$ -Decays

The ATLAS Detector

- Inner Detector: momentum of charged particles
- Electromagnetic Calorimeter: energy of electrons and photons
- Hadronic Calorimeter: energy of hadrons
- Muon Detector: precision chambers (MDTs, CSCs) + trigger chambers (RPCs, TGCs): position and momentum measurement of muons
- Magnet System

Monitored Drift Tube Chambers

- 2 multilayers consisting of 3 or 4 layers of drift tubes each
- optical systems for monitoring of deformations + temperature sensors
- spacer frame

Expected Background Rates for MDT Chambers @ ATLAS

- neutrons and γ s (\approx 1MeV) dominate background in ATLAS muon spectrometer
- 100 Hz/cm² maximum background rate for MDT-chambers @ design luminosity of 10³⁴cm⁻²s⁻¹ (see Baranov et al. ATL-GEN-2005-001)
- safety factor of 5 \rightarrow 500 $\frac{Hz}{cm^2}$
- result: 300 kHz per tube (2 m length and 3 cm in diameter)

Upgrade to SLHC

luminosity rises by a factor of 10 \rightarrow maximum background rate per tube: 3000 kHz

MDT Upgrade for SLHC Background Conditions

Alternative Drift Gas

 $Ar:CO_2 97:3 \rightarrow Ar:CO_2:N_2, 96:3:1$

Alternative Tube Geometry

reduce tube diameter: $30mm \rightarrow 15mm$ (reduced background rate per tube)

Performance Studies of Drift Tubes @ SLHC Background Conditions

need...

$...\gamma$ -background

- \Rightarrow Gamma Irradiation Facility (= test area for particle detectors at CERN)
 - γ -source (137 Cs with E $_{\gamma}$ =662keV, 560GBq) to simulate SLHC background conditions
 - maximum γ -flux: $10^6 \text{cm}^{-2} \text{s}^{-1}$; system of lead filters in front of source allows to adjust photon rate (e.g. $\frac{1}{6}$, $\frac{1}{2}$ × maximum flux)

...Muons

cosmic muons

Performance Studies of Drift Tubes @ SLHC Background Conditions

need also...

..Trigger Unit

- \bullet distinguish between signal (cosmic muons) and background (γ) hits
- provide information about time of muon transition
- ullet definition of muon track o pre-selection of drift tubes hit by muons

⇒ segmented 4-layer scintillator-trigger-hodoscope

Setup for Drift Tube Studies

Hodoscope Setup

- 24 scintillators arranged in 4 layers
- 2 double layers with drift detectors in between
- 2 layers with 5 short scintillators (30 cm x 4.5 cm x 9 cm, TDC spectra)
- 2 layers with 7 long scintillators (50 cm x 4 cm 3cm, adapted to drift tube geometry)
- crossed scintillator geometry
- ⇒ unambiguous muon trigger via 4 layer coincidence (20ns overlap time)

Hodoscope: Electronic Setup

Scintillator - Photomultiplier Units

- organic BC-400 plastic scintillators, 30 years old + newly machined
- scintillators wrapped into Al-foil and light-tight tape
- plexiglas block on one end (light guide to PM)
- silicon grease between plexiglas and phototube (light coupling)

Scintillator-PM Units - Energy Response

- γ -spectra of 22 Na, 60 Co, 137 Cs, 207 Bi (ADC readout)
- energy transfer via Compton scattering
- continuous distribution, maximum energy transfer
 © Compton edge:

$$E_{Compton} = E_{\gamma} \frac{2E_{\gamma}/m_e c^2}{1 + 2E_{\gamma}/m_e c^2}$$

 \Rightarrow measured pulse height vs. $E_{Compton}$: linear relation

Pulse Height: Muon vs. Background (γ) Hits

- 137 Cs Compton edge: $^{0.48}$ MeV vs muon: $^{6.4}$ MeV (MIP with $^{dE}_{dx}$ =2.13 MeV/cm)
- good separation between background and muon hits
- muon peaks matched via photomultiplier HV

⇒ set global discriminator threshold to suppress background hits

Muon Trigger

- four layer coincidence
- optimized discriminator thresholds

```
\Rightarrow trigger rate: 1 Hz
without source and @ maximum background flux (106cm<sup>-2</sup>s<sup>-1</sup>)
```

- ⇒ constant trigger rate indicates reliable muon trigger, (+ offline check due to pulse height (QDC) spectra)

Preselection of Drift Tubes Hit by Muons

- well defined muon road due to data from 50cm scintillators (in agreement with data from reference chambers)
- allow only tubes within muon road (yellow area) for analysis of drift time data to reduce background

Time Resolution of TDC Spectra

- time correction: transit time of scintillation light within scintillator has to be taken into consideration
- 50cm scintillators give information where short scintillators were hit by muon

⇒ time resolution is limited by transit time of scintillation light for a distance of 4cm

Transit Time of Scintillation Light

TDC(upper scint.) - TDC(lower scint.) = transit time difference of scintillation light in scintillators + time of flight of muon

→ speed of light in scintillator:

 $\frac{1}{0.27} \, \frac{\textit{cm}}{\textit{TDC channel}} \, \, (1 \, \text{TDC channel} = 0.3 \, \, \text{ns})$

 \rightarrow time resolution: 0.5 ns

Muons in $t\bar{t}$ -Decays

Standard Modell: $t \rightarrow b + W$

further W-decay: leptonic (lepton + neutrino), hadronic (2 jets)

Semileptonic $t\bar{t}$ -Decay:

Dileptonic $t\bar{t}$ -Decay:

- 4 jets (2 b-jets)
- 1 lepton (e, μ , τ s excluded)
- missing E_T (1 neutrino)

- 2 b-jets
- 2 leptons (e, μ , τ s excluded)
- missing E_T (2 neutrinos)

Branching Ratio of Semileptonic and Dileptonic $t\bar{t}$ Decays

Standard Model prediction

$$R_{\textit{dileptonic/semileptonic}} = \frac{\left(\frac{1}{9} \times \frac{1}{9}\right)_{\text{ee}} + \left(\frac{1}{9} \times \frac{1}{9}\right)_{\mu\mu} + \left(2 \times \frac{1}{9} \times \frac{1}{9}\right)_{\mu e}}{\left(2 \times \frac{1}{9} \times \frac{2}{3}\right)_{e+\text{jets}} + \left(2 \times \frac{1}{9} \times \frac{2}{3}\right)_{\mu+\text{jets}}} = \frac{1}{6}$$

physics beyond the Standard Model...

- ... would give rise to new top decay channels
 - $t \rightarrow H^{\pm} + b$
 - ...
- \Rightarrow modification of branching ratio $R_{dileptonic/semileptonic}$

cut-based analysis: good measurement of $p_{\mu} \to \text{higher precision for}$ selection efficiency (cut on muon p_T) and thus for $R_{dileptonic/semileptonic}$:)

Summary

- performance studies for drift tube upgrade @ SLHC background conditions require trigger unit
- constructed segmented, 4-layer scintillator hodoscope
- good separation between background and muon hits due to
 - 4-layer coincidence
 - optimized threshold values for discriminators
- definition of muon road possible
- TDC-spectra: time resolution of 0.5ns (limited due to finite transit time of scintillation light)