Applications of AdS/CFT Methods to Quantum Criticality in Condensed Matter Physics

Steffen Müller

Max-Planck-Institut for Physics, Muinch

July 26, 2010

Quantum criticality in condensed matter systems

2 "Real Life" condensed matter systems

Quantum criticality in condensed matter systems

2 "Real Life" condensed matter systems

Quantum phase transitions (QPT)

Properties of QPTs

- driven by pure quantum fluctuations
- identified by non-analytical points in ground state energy
- accessible by varying a physical parameter g at T=0
- 1st order or continuous phase transition

QPTs in the $T \neq 0$ regime

- thermal phase transitions with emerging topological order
 - Berezinskii–Kosterlitz–Thouless transition (BKT)
- No spontaneous symmetry breaking
- No emergence of spatially uniform order parameter

Quantum phase transitions (QPT)

Properties of BKT

- T > T_{BKT} disordered phase possess exponentially decaying correlations
- $T < T_{\rm BKT}$ quasi-long-range order phase with algebraic decaying order parameter correlations
- higher order physical quantities are continuous
 - → phase transition of infinite order

Interesting quantum phase transitions

- order ←→ disorder (also known in classical systems)
- supersolid ←→ superfluid (⁴He at ultra cold temperatures)
- High- T_C superconductor \longleftrightarrow insulator (thin disordered films)

Quantum critical point (QCP)

Properties of QCPs

- energy fluctuations about ground state vanishes (no mass gap)
- correlation length diverges (no coherence)
- system possess scale invariance in space and time

scale transformations with dynamical scaling exponent z

$$t \longrightarrow \lambda^z t$$

$$x \longrightarrow \lambda x$$

ullet Two scalings, energy and distance are related by $\Delta \propto \xi^{-z}$

$$\Delta \propto (g - g_c)^{\nu z}$$

$$\xi^{-1} \propto (g - g_c)^{\nu}$$

Quantum critical region (QCR)

Properties of QCRs

- QCP are felt over thermal regions \longrightarrow QCR
- growing with increasing temperature (non-classical)
- allows finite temperature crossovers (avoiding CMWH)

- → QCP/QCR are difficult to handle using "traditional" CMT tools
 - In the QCR there are no weakly coupled quasi-particle
 - No order parameter description for finite T (see BKT)
 - ▶ Field theory works for $T \neq 0$ in imaginary time only
 - Failure in real-time domain for $t > \hbar/k_B T$
 - ullet AdS/CFT provides models of strongly coupled QC in 2+1 dimensions

Quantum criticality in condensed matter systems

2 "Real Life" condensed matter systems

BCS superconductors

Properties of BCS superconductors

- Cooper pair formation via interchange of virtual phonons
- Cooper paired dressed electrons lead to energy gap

$$E_{\mathsf{gap}} = 3.52 k_{B} T_{c} \sqrt{1 - \left(T/T_{c} \right)}$$

- Isotope effect $T_c \propto 1/\sqrt{M}$ due to phonon exchange
- Infinte DC conductivity
- Ideal diamagnet due to Meißner-Ochsenfeld effect

Non BCS superconductors

- No isotope effect
- Deviation from universal energy gap law
- Heavy fermions with extremely high "effective thermal mass"
- High temperature $T_c > 30 \mathrm{K}$

High T_c superconductors

Properties of SC QPT

- 2nd order phase transition
- mean field critical exponent 1/2
- spontaneously broken local U(1)

Mysteries

- Origin / physics of pseudo gap
- Pairing mechanism of electrons
- Strange metal $\stackrel{?}{\equiv}$ QCR
- QCP under superconducting dome

- Attractive strong electron-electron interaction due to spin interactions
- Normal state already strongly coupled → QCP with QCR

Graphene

Fermi surface before Lifshitz transition $\mu < 0$

Fermi surface at Lifshitz point of quantum phase transition $\mu=0$

Fermi surface after Lifshitz transition $\mu>0$

- ullet Change Fermi surface as a function of charge carrier density $\propto \mu$
- "True" topological QPT without order parameter or broken symmetry

Graphene

Properties of Graphene

- Semi-metal / zero gap semiconductor
- Conical dispersion relation

$$E = \hbar v_F |\mathbf{k}|$$

Relativistic spin ¹/2 particles
 → Dirac equation

• Mermin–Wagner–Hohenberg theorem forbids phase transition for $T \neq 0 \longrightarrow \text{Crossover in QCR}$

Quantum criticality in condensed matter systems

2 "Real Life" condensed matter systems

electric charged black hole

magnetic charged black hole

Gravity duals used for condensed matter physics

Correspondence Gravity Condensed Matter Einstein–Maxwell theory on AdS black hole with Hawking temperature temperature T

- Solution to Einstein-Maxwell equation leads to AdS
- Black hole solution to EM equation → AdS–Schwarzschild
- Dyonic (electrically & magnetically charged) black hole solution to EM equation → Reissner-Nordstrom-AdS black hole

chemical potential μ

applied magnetic field

Holographic superconductors

Minimal Lagrangian

$$\mathcal{L}=rac{1}{2\kappa^2}\left(R+rac{d(d-1)}{L^2}
ight)-rac{1}{4g^2}F^2-|
abla\phi-iqA\phi|^2-m^2\left|\phi
ight|^2$$

Normal phase $T > T_c$

- ullet Gravity dual to normal state \longrightarrow Reissner–Nordstrom–AdS black hole
- ullet Charged condensate \sim charged operator $\langle {\it Q}
 angle
 eq 0$ dual to scalar field ϕ

$$\langle Q \rangle = \frac{2\Delta - d}{L} \phi$$

Superconducting phase $T < T_c$ and $\phi \neq 0$

• Below critical temperature different spacetime background needed

$$ds^{2} = \frac{L^{2}}{r^{2}} \left(-f(r) e^{-\chi(r)} dt^{2} + f(r)^{-1} dr^{2} + dx \cdot dx \right)$$

Holographic superconductors

Solution

- Plugging metric in Einstein–Maxwell equation (EOM of Lagrangian) \longrightarrow Yields solution $\phi(r)$
- ullet Expectation value of charged condensate $\langle Q
 angle$ can be read off
- Showing 2nd order phase transition with critical exponent 1/2

Further properties

- infinite DC conductivity
- gaped AC conductivity
- extreme type II superconductors since photon is not dynamical
 - critical field B_c calculated via free energy difference
 - \triangleright critical field B_{c2} calculated from above

Quantum critical transport

Transport coefficients

- "Traditional" identifications as low-lying excitations of ground state
- described by quasi particles or non-linear waves

But: In QCR these concepts are not well defined

In 2 + 1 dim we can write transport coefficients as

$$\sigma = \frac{\tilde{e}^2}{h} \times \text{ universal dimensionales constant}$$

- AdS/CFT allows analytical and structural insights
- ullet For graphene $ilde{e}=e$ the transport coefficients are shown to obey the above relations with Fermi level at Dirac point