Introduction to Gauge/Gravity Duality

Patrick Kerner

Max-Planck-Institut für Physik

07/26/2010 Young Scientists Workshop

A general Form of Gauge/Gravity duality

A Conformal Field Theory (CFT) in d-dimensions

is dual to

Quantum Gravity in Anti-de Sitter (AdS) space in (d+1)-dimensions

where the coupling constants behave as $g_{
m CFT}=rac{1}{g_{
m QG}}$

A general Form of Gauge/Gravity duality A Conformal Field Theory (CFT) Part 1 in d-dimensions

Quantum Gravity in Anti-de Sitter (AdS) space in (d+1)-dimensions

where the coupling constants behave as $g_{
m CFT}=rac{1}{g_{
m QG}}$

A general Form of Gauge/Gravity duality A Conformal Field Theory (CFT) Part 1 in d-dimensions

is dual to

Quantum Gravity in Anti-de Sitter (AdS) space in (d+1)-dimensions

where the coupling constants behave as $g_{
m CFT}=rac{1}{g_{
m QG}}$

A general Form of Gauge/Gravity duality Part 1 A Conformal Field Theory (CFT) in d-dimensions is dual to Part 3 Part 2 Quantum Gravity in Anti-de Sitter (AdS) space in (d+1)-dimensions where the coupling constants behave as $g_{CFT} =$ $g_{\rm QG}$

A general Form of Gauge/Gravity duality Part 1 A Conformal Field Theory (CFT) in d-dimensions is dual to Part 3 Part 2 Quantum Gravity in Anti-de Sitter (AdS) space in (d+1)-dimensions where the coupling constants behave as $g_{CFT} = g_{CFT}$

 $g_{\rm QG}$

Part 4: Different Applications

 ${\it I}$ Conformal transformation leaves angles invariant $g_{\mu\nu}'(x)=\Omega(x)g_{\mu\nu}(x)$

${\rm \bullet}$ Conformal transformation leaves angles invariant $g_{\mu\nu}'(x)=\Omega(x)g_{\mu\nu}(x)$

${\rm \bullet}$ Conformal transformation leaves angles invariant $g_{\mu\nu}'(x)=\Omega(x)g_{\mu\nu}(x)$

 ${\rm \bullet}$ Conformal transformation leaves angles invariant $g_{\mu\nu}'(x)=\Omega(x)g_{\mu\nu}(x)$

• In Minkowski space the symmetry is generated by: Translations $x'_{\mu} = x_{\mu} + a_{\mu}$ Lorentz transformations $x'_{\mu} = \Lambda^{\mu}{}_{\nu}x^{\nu}$ Dilitations $x'^{\mu} = \lambda x^{\mu}$ Special conformal transf. $x'^{\mu} = \frac{x^{\mu} - b^{\mu}x^{2}}{1 - 2b^{\nu}x_{\nu} + b^{2}x^{2}}$

 ${\rm \bullet}$ Conformal transformation leaves angles invariant $g_{\mu\nu}'(x)=\Omega(x)g_{\mu\nu}(x)$

In Minkowski space the symmetry is generated by:
Translations $x'_{\mu} = x_{\mu} + a_{\mu}$ Lorentz transformations $x'_{\mu} = \Lambda^{\mu}{}_{\nu}x^{\nu}$ Dilitations $x'^{\mu} = \lambda x^{\mu}$ Special conformal transf. $x'^{\mu} = \frac{x^{\mu} - b^{\mu}x^{2}}{1 - 2b^{\nu}x_{\nu} + b^{2}x^{2}}$

 ${\it o}$ The transformations form the group SO(2,d).

 ${\rm \bullet}$ Conformal transformation leaves angles invariant $g_{\mu\nu}'(x)=\Omega(x)g_{\mu\nu}(x)$

• In Minkowski space the symmetry is generated by: Translations $x'_{\mu} = x_{\mu} + a_{\mu}$ Lorentz transformations $x'_{\mu} = \Lambda^{\mu}{}_{\nu}x^{\nu}$ Dilitations $x'^{\mu} = \lambda x^{\mu}$ Special conformal transf. $x'^{\mu} = \frac{x^{\mu} - b^{\mu}x^{2}}{1 - 2b^{\nu}x_{\nu} + b^{2}x^{2}}$

 ${\circ}$ The transformations form the group SO(2,d)

OFT is invariant under conformal transformations

• CFT is invariant under conformal transformations • Operators are labeled by the eigenvalue $-i\Delta$ of the Dilitation operator $\phi'(x) = \lambda^{\Delta}\phi(\lambda x)$ Δ : scaling dimension

• CFT is invariant under conformal transformations • Operators are labeled by the eigenvalue $-i\Delta$ of the Dilitation operator $\phi'(x) = \lambda^{\Delta}\phi(\lambda x)$ Δ : scaling dimension

So Very strong symmetry $\langle \phi_i(x)\phi_j(y)\rangle = \frac{c\,\delta_{ij}}{|x-y|^{2\Delta}}$

 $\langle \phi_i(x_1)\phi_j(x_2)\phi_k(x_3)\rangle = \frac{c_{ijk}}{|x_{12}|^{\Delta_1 + \Delta_2 - \Delta_3} + |x_{13}|^{\Delta_1 + \Delta_3 - \Delta_2}|x_{23}|^{\Delta_2 + \Delta_3 - \Delta_1}}$

⊘ AdS_{d+1} is a hyperboloid in d+2 dimensions $X_0^2 + X_{d+1}^2 - \sum_{i=1}^d X_i^2 = R^2$

AdS_{d+1} is a hyperboloid in d+2 dimensions X₀² + X_{d+1}² - ∑_{i=1}^d X_i² = R² By construction, the isometry is SO(2, d) (the conformal group in d-dimensions)

AdS_{d+1} is a hyperboloid in d+2 dimensions
 X₀² + X_{d+1}² − ∑_{i=1}^d X_i² = R²
 By construction, the isometry is SO(2, d)(the conformal group in d-dimensions)

An AdS metric is given by
 $ds^2 = \frac{R^2}{z^2} (dz^2 - dt^2 + d\vec{x}^2)$

AdS_{d+1} is a hyperboloid in d+2 dimensions
 X₀² + X_{d+1}² − ∑_{i=1}^d X_i² = R²
 By construction, the isometry is SO(2, d)(the conformal group in d-dimensions)

 An AdS metric is given by ds² = ^{R²}/_{z²} (dz² − dt² + dx²)
 The conformal boundary of AdS space z = 0 is Minkowski space.

- AdS_{d+1} is a hyperboloid in d+2 dimensions
 X₀² + X_{d+1}² − ∑_{i=1}^d X_i² = R²

 By construction, the isometry is (SO(2, d))(the conformal group in d-dimensions)
- An AdS metric is given by
 ds² = ^{R²}/_{z²} (dz² − dt² + dx²)

 The conformal boundary of AdS space z = 0
 is Minkowski space.

Theories have the same symmetry SO(2, d).
 => Conjecture: Different descriptions of the same effective field theory.

Theories have the same symmetry SO(2, d).
 => Conjecture: Different descriptions of the same effective field theory.

Identify Minkowski spaces
 boundary of Ad5 = spacetime of CFT
 => Information stored in boundary => Holography

Theories have the same symmetry SO(2, d).
 => Conjecture: Different descriptions of the same effective field theory.

 Identify Minkowski spaces

 boundary of AdS = spacetime of CFT
 > Information stored in boundary => Holography

 Identify the partition functions
 ZQG = Z_{CFT}

 Identify the partition functions

=> Correlation functions (Observables) identified

Theories have the same symmetry SO(2, d).
 => Conjecture: Different descriptions of the same effective field theory.

 Identify Minkowski spaces

 boundary of Ad5 = spacetime of CFT
 > Information stored in boundary => Holography

 Identify the partition functions
 ZQG = ZCFT

 Identify the partition functions

=> Correlation functions (Observables) identified

In addition: Dictionary between gravity fields and field theory operators needed.

Massive scalar in AdS_{d+1}

Massive scalar in AdS_{d+1} Sequation of Motion (Klein-Gordon Equation) $(\nabla^2 - m^2)\phi = 0$ ${\ensuremath{ \circ }}$ Solutions close to the boundary z=0 $\phi(z) = Az^{d-\Delta} + Bz^{\Delta} \qquad \Delta = \frac{d}{2} + \sqrt{\frac{d^2}{4} + R^2 m^2}$ > A, B have correct dimension to interpret

=> A, B have correct dimension to interpret them as source and vev of an operator Owith scaling dimension Δ .

Massive scalar in AdS_{d+1} Sequation of Motion (Klein-Gordon Equation) $(\nabla^2 - m^2)\phi = 0$ ${\color{black} \circ}$ Solutions close to the boundary z=0 $\phi(z) = Az^{d-\Delta} + Bz^{\Delta} \qquad \Delta = \frac{d}{2} + \sqrt{\frac{d^2}{4} + R^2 m^2}$ => A, B have correct dimension to interpret them as source and vev of an operator \mathcal{O}

Identify A as source $S_{def} = S + \int d^d x A \mathcal{O}$ and B as vev $\langle \mathcal{O} \rangle = B$

with scaling dimension Δ .

 ${\rm @}$ A gravity field ϕ with mass m is dual to an operator ${\mathcal O}$ with scaling dimension Δ

$$\Delta = \frac{d}{2} + \sqrt{\frac{d^2}{4} + R^2 m^2}$$

 ${\rm @}$ A gravity field ϕ with mass m is dual to an operator ${\mathcal O}$ with scaling dimension Δ

$$\Delta = \frac{d}{2} + \sqrt{\frac{d^2}{4} + R^2 m^2}$$

Partition functions are identified

 $\langle \mathrm{e}^{\int \mathrm{d}^d x \phi_{\mathrm{bdy}}(\vec{x}) \mathcal{O}(\vec{x})} \rangle_{\mathrm{CFT}} = Z_{\mathrm{QC}} \left[\phi(\vec{x}, z) \Big|_{z=0} = \phi_{\mathrm{bdy}}(\vec{x}) \right]$

 ${\rm @}$ A gravity field ϕ with mass m is dual to an operator ${\mathcal O}$ with scaling dimension Δ

$$\Delta = \frac{d}{2} + \sqrt{\frac{d^2}{4} + R^2 m^2}$$

Partition functions are identified

 $\langle \mathrm{e}^{\int \mathrm{d}^d x \phi_{\mathrm{bdy}}(\vec{x}) \mathcal{O}(\vec{x})} \rangle_{\mathrm{CFT}} = Z_{\mathrm{QC}} \left[\phi(\vec{x}, z) \right|_{z=0} = \phi_{\mathrm{bdy}}(\vec{x}) \right]$

• Correlation functions (Observables): $\langle \mathcal{O}_{1}(\vec{x}_{1})\cdots\mathcal{O}_{n}(\vec{x}_{n})\rangle_{\mathrm{CFT}} = \frac{\delta^{n}\log Z_{\mathrm{CFT}}}{\delta\phi_{\mathrm{bdy}}^{1}(\vec{x}_{1})\cdots\delta\phi_{\mathrm{bdy}}^{n}(\vec{x}_{n})}$ $= \frac{\delta^{n}\log Z_{\mathrm{QC}}\left[\phi^{i}(\vec{x}_{i},z=0) = \phi_{\mathrm{bdy}}^{i}\right]}{\delta\phi_{\mathrm{bdy}}^{1}(\vec{x}_{1})\cdots\delta\phi_{\mathrm{bdy}}^{n}(\vec{x}_{n})}$

Best understood example

 $\mathcal{N}=4$ SYM Theory with gauge group SU(N) in 4-dim at large N and large 't Hoft coupling $\lambda = Ng_{
m YM}^2$.

is dual to

Type IIB Supergravity on $AdS_5 \times S^5$.

Parameters of the theories are related by $g_{
m YM}^2 = 2\pi g_s$ $\frac{R^4}{(\alpha')^2} = 2\lambda$

 ${\rm \bullet}$ Consider U(N) gauge theory with adjoint fields ${\Phi_i}^j$

 $\mathcal{L} \propto \operatorname{tr}(\partial \Phi \partial \Phi) + g_{\mathrm{YM}} \operatorname{tr}(\Phi^3) + g_{\mathrm{YM}}^2 \operatorname{tr}(\Phi^4) + \cdots$

 ${\rm \ress}$ Consider U(N) gauge theory with adjoint fields ${\Phi_i}^j$

 $\mathcal{L} \propto \operatorname{tr}(\partial \Phi \partial \Phi) + g_{\mathrm{YM}} \operatorname{tr}(\Phi^3) + g_{\mathrm{YM}}^2 \operatorname{tr}(\Phi^4) + \cdots$ © Define $\lambda = N g_{\mathrm{YM}}^2$ and rescale $\tilde{\Phi} = g_{\mathrm{YM}} \Phi$

 $\mathcal{L} \propto \frac{N}{\lambda} \left[\operatorname{tr}(\partial \Phi \partial \Phi) + \operatorname{tr}(\Phi^3) + \operatorname{tr}(\Phi^4) + \cdots \right]$

- ${\rm \bullet}$ Consider U(N) gauge theory with adjoint fields ${\Phi_i}^j$
- $\mathcal{L} \propto \operatorname{tr}(\partial \Phi \partial \Phi) + g_{\mathrm{YM}} \operatorname{tr}(\Phi^3) + g_{\mathrm{YM}}^2 \operatorname{tr}(\Phi^4) + \cdots$
- Define $\lambda = Ng_{YM}^2$ and rescale $\tilde{\Phi} = g_{YM}\Phi$ $\mathcal{L} \propto \frac{N}{\lambda} \left[\operatorname{tr}(\partial \Phi \partial \Phi) + \operatorname{tr}(\Phi^3) + \operatorname{tr}(\Phi^4) + \cdots \right]$
- Seynman rules:

propagator λ/N , vertex N/λ , loop N

- ${\rm \bullet}$ Consider U(N) gauge theory with adjoint fields ${\Phi_i}^j$
- $\mathcal{L} \propto \operatorname{tr}(\partial \Phi \partial \Phi) + g_{\mathrm{YM}} \operatorname{tr}(\Phi^3) + g_{\mathrm{YM}}^2 \operatorname{tr}(\Phi^4) + \cdots$
- Define $\lambda = Ng_{YM}^2$ and rescale $\tilde{\Phi} = g_{YM}\Phi$ $\mathcal{L} \propto \frac{N}{\lambda} \left[\operatorname{tr}(\partial \Phi \partial \Phi) + \operatorname{tr}(\Phi^3) + \operatorname{tr}(\Phi^4) + \cdots \right]$
- Seynman rules: propagator λ/N , vertex N/λ , loop N
- So For E propagators, V vertices, F loops $N^{E+F-V}\lambda^{E-V} = N^{\chi}\lambda^{F-\chi} \quad \chi = 2 2g^{\checkmark}$ Genus
 - => Topological Expansion => String Theory

- ${\rm \bullet}$ Consider U(N) gauge theory with adjoint fields ${\Phi_i}^j$
- $\mathcal{L} \propto \operatorname{tr}(\partial \Phi \partial \Phi) + g_{\mathrm{YM}} \operatorname{tr}(\Phi^3) + g_{\mathrm{YM}}^2 \operatorname{tr}(\Phi^4) + \cdots$
- Define $\lambda = Ng_{YM}^2$ and rescale $\tilde{\Phi} = g_{YM}\Phi$ $\mathcal{L} \propto \frac{N}{\lambda} \left[\operatorname{tr}(\partial \Phi \partial \Phi) + \operatorname{tr}(\Phi^3) + \operatorname{tr}(\Phi^4) + \cdots \right]$
- Seynman rules: propagator λ/N , vertex N/λ , loop N
- ${\it \scriptsize \odot}$ For E propagators, V vertices, F loops

 $N^{E+F-V}\lambda^{E-V} = N^{\chi}\lambda^{F-\chi} \quad \chi = 2 - 2g \checkmark \text{genus}$

=> Topological Expansion => (String Theory)

The correspondence arises as the identification of the low energy description of open and closed strings in the presence of a stack of ND3-branes (4-dim hypersurfaces)

- The correspondence arises as the identification of the low energy description of open and closed strings in the presence of a stack of ND3-branes (4-dim hypersurfaces)
- So Both ends of open strings end on the stack
 => N^2 possibilities => generates U(N) theory
 Conserved charges determines theory
 uniquely => $\mathcal{N} = 4$ SYM

- The correspondence arises as the identification of the low energy description of open and closed strings in the presence of a stack of ND3-branes (4-dim hypersurfaces)
- So Both ends of open strings end on the stack
 => N^2 possibilities => generates U(N) theory
 Conserved charges determines theory
 uniquely => $\mathcal{N} = 4$ SYM
- Closed strings (Gravitons) are emitted from stack => Curved spacetime AdS₅ × S⁵
 Conserved charges determines theory uniquely => Type IIB SUGRA

 Insights into strongly coupled (large N) field theories by weakly coupled gravity:
 QCD especially transport in sQGP (RHIC, LHC), Technicolor, Condensed Matter Systems

 Insights into strongly coupled (large N) field theories by weakly coupled gravity: next talks QCD especially transport in sQGP (RLIC, LHC), Technicolor, Condensed Matter Systems

- Insights into strongly coupled (large N) field theories by weakly coupled gravity: next talks QCD especially transport in sQGP (RL1C, LHC), Technicolor, Condensed Matter Systems
- Insights into strongly coupled quantum gravity by weakly coupled quantum field theories: Entropy of Black Holes, Membranes in M-Theory

- Insights into strongly coupled (large N) field theories by weakly coupled gravity: next talks QCD especially transport in sQGP (RV1C, LHC), Technicolor, Condensed Matter Systems
- Insights into strongly coupled quantum gravity by weakly coupled quantum field theories: Entropy of Black Holes, Membranes in M-Theory

Constantin's talk

- Insights into strongly coupled (large N) field theories by weakly coupled gravity: next talks QCD especially transport in sQGP (RVIC, LHC), Technicolor, Condensed Matter Systems
- Insights into strongly coupled quantum gravity by weakly coupled quantum field theories: Entropy of Black Holes, Membranes in M-Theory Constantin's
- Formal developments: talk
 Hidden Symmetries in scattering amplitudes,
 Integrability of $\mathcal{N} = 4$ SYM Theory

Conclusions

General Form of the Gauge/Gravity duality

Seample with String Theory origin

Conclusions

General Form of the Gauge/Gravity duality

Seample with String Theory origin

