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Conformal Field Theory

CFT is invariant under conformal transformations

Operators are labeled by the eigenvalue      of 
the Dilitation operator
                                 : scaling dimension

Very strong symmetry

−i∆

∆φ�(x) = λ∆φ(λx)

�φi(x)φj(y)� =
c δij

|x − y|2∆

�φi(x1)φj(x2)φk(x3)� =
cijk

|x12|∆1+∆2−∆3 + |x13|∆1+∆3−∆2 |x23|∆2+∆3−∆1
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How the duality works?
Theories have the same symmetry          .
=> Conjecture: Different descriptions of the same 
effective field theory.

Identify Minkowski spaces
boundary of AdS = spacetime of CFT 
=> Information stored in boundary => Holography

Identify the partition functions

=> Correlation functions (Observables) identified

In addition: Dictionary between gravity fields and 
field theory operators needed.

SO(2, d)

= ZCFTZQG
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Massive scalar in          
Equation of Motion (Klein-Gordon Equation)

Solutions close to the boundary

=>   ,   have correct dimension to interpret 
them as source and vev of an operator 
with scaling dimension   . 

Identify   as source
and    as vev 

AdSd+1

(∇2 −m2)φ = 0

z = 0

φ��(z)− d− 1
z

φ�(z)− m2R2

z2
φ(z) = 0

∆ =
d

2
+

�
d2

4
+ R2m2φ(z) = Azd−∆ + Bz∆

A

A

B

B

O

�O� B=
Sdef = S +

�
ddx OA

∆
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Take-Home Message
A gravity field   with mass    is dual to an 
operator   with scaling dimension 

Partition functions are identified

Correlation functions (Observables):

φ m
O ∆

∆ =
d

2
+

�
d2

4
+ R2m2

�e
R

ddxφbdy(�x)O(�x)�CFT = ZQC

�
φ(�x, z)

���
z=0

= φbdy(�x)
�

�O1(�x1) · · · On(�xn)�CFT =
δn log ZCFT

δφ1
bdy(�x1) · · · δφn

bdy(�xn)

=
δn log ZQC

�
φi(�xi, z = 0) = φi

bdy

�

δφ1
bdy(�x1) · · · δφn

bdy(�xn)



Best understood example

           SYM Theory with gauge group         in 4-dim
 at large   and large ‘t Hoft coupling             .

is dual to

Type IIB Supergravity on            .

Parameters of the theories are related by 

N = 4
λ = Ng2

YM

AdS5 × S5

g2
YM= 2πgs

R4

(α�)2 2λ=

SU(N)
N
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String Theory Origin
The correspondence arises as the 
identification of the low energy description 
of open and closed strings in the presence of 
a stack of   D3-branes (4-dim hypersurfaces)

Both ends of open strings end on the stack 
=>     possibilities => generates        theory
Conserved charges determines theory 
uniquely =>         SYM 

Closed strings (Gravitons) are emitted from 
stack => Curved spacetime
Conserved charges determines theory 
uniquely => Type IIB SUGRA

N = 4

AdS5 × S5

N

N2 U(N)
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Different Applications
Insights into strongly coupled (large N) field 
theories by weakly coupled gravity:
QCD especially transport in sQGP (RHIC, 
LHC), Technicolor, Condensed Matter Systems

Insights into strongly coupled quantum 
gravity by weakly coupled quantum field 
theories: Entropy of Black Holes, Membranes 
in M-Theory

Formal developments:
Hidden Symmetries in scattering amplitudes, 
Integrability of         SYM Theory

next talks

Constantin’s
talk

N = 4
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