Edge states and the Luttinger liquid in M-theory

Constantin Greubel

Max-Planck-Institut für Physik (Werner Heisenberg Institut)

Young Scientists Workshop, Ringberg July 26th 2010

1/17

Outline

- Motivation
- Introduction
 - What is M-theory?
 - What is the ABJM model?
- Model and Calculations
 - Reduction to Type IIA SUGRA
 - Brane embedding
 - Finite chemical potential
- Results
 - Spectral function
 - Phase diagram
- Condensed Matter

2/17

Lower dimensional CMT with String Theory?

Condensed matter systems

Compute quantities in condensed matter systems with strong coupling

Lower dimensional CMT with String Theory?

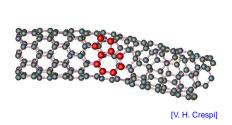
Condensed matter systems

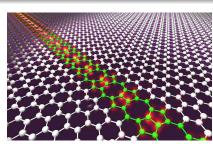
- Compute quantities in condensed matter systems with strong coupling
- Nanotechnology makes manipulations on atomic scale possible
- physics on lower dimensional hypersurfaces: charges and currents confined, but fields propagate all dim's

Lower dimensional CMT with String Theory?

Condensed matter systems

- Compute quantities in condensed matter systems with strong coupling
- Nanotechnology makes manipulations on atomic scale possible
- physics on lower dimensional hypersurfaces: charges and currents confined, but fields propagate all dim's





IY. Lin. USF

What does the "M" stand for?

What does the "M" stand for? Not know yet. (Matrix, Mystery, Membrane, . . . ?)

What does the "M" stand for? Not know yet. (Matrix, Mystery, Membrane, . . . ?)

Properties of M-theory

- no complete background-independent formulation yet!
- UV-completion of SUGRA
- 11-dimensional theory
- lacktriangle no strings but M2-branes, that is 1 + 2 dimensional objects
- thought to unify all different types of string theory

What does the "M" stand for? Not know yet. (Matrix, Mystery, Membrane, . . . ?)

Properties of M-theory

- no complete background-independent formulation yet!
- UV-completion of SUGRA
- 11-dimensional theory
- ullet no strings but M2-branes, that is 1 + 2 dimensional objects
- thought to unify all different types of string theory

We can/will get back to 10d string theory by dimensional reduction on a circle

What does the "M" stand for? Not know yet. (Matrix, Mystery, Membrane, . . . ?)

Properties of M-theory

- no complete background-independent formulation yet!
- UV-completion of SUGRA
- 11-dimensional theory
- no strings but M2-branes, that is 1 + 2 dimensional objects
- thought to unify all different types of string theory

We can/will get back to 10d string theory by dimensional reduction on a circle

From string theory we can uplift to M-theory

ABJM

- dubbed after Aharony, Bergman, Jafferis and Maldacena
- [0806.1218]

- holographic principle, gauge/gravity duality
- N_c M2-branes probe a $\mathbb{C}^4/\mathbb{Z}_k$ singularity

(Super-) Gravity side

limit for large N_c where 't Hooft coupling $\lambda = N_c/k$ is kept fixed: $AdS_4 \times S^7/Z_k$ in SUGRA

limit for $k \longrightarrow \infty$ type IIA string theory on $AdS_4 \times \mathbb{CP}^3$

Gauge theory side

1+2 dimensional theory with $\mathcal{N}=6$ SUSY Conformal field theory i. e. no scales

ABJM

- dubbed after Aharony, Bergman, Jafferis and Maldacena
- [0806.1218]

- holographic principle, gauge/gravity duality
- N_c M2-branes probe a $\mathbb{C}^4/\mathbb{Z}_k$ singularity

(Super-) Gravity side

limit for large N_c where 't Hooft coupling $\lambda = N_c/k$ is kept fixed: $AdS_4 \times S^7/Z_k$ in SUGRA

limit for $k \longrightarrow \infty$ type IIA string theory on $AdS_4 \times \mathbb{CP}^3$

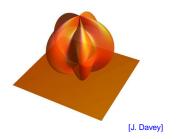
Gauge theory side

1+2 dimensional theory with $\mathcal{N}=6$ SUSY Conformal field theory i. e. no scales

Chern-Simons terms → often occur in condensed matter systems!

M-theory content

Coincident Stack of N_c M2-branes transverse space is $\mathbb{C}^4/\mathbb{Z}_k$ orbifold



M-theory content

Coincident Stack of N_c M2-branes transverse space is $\mathbb{C}^4/\mathbb{Z}_k$ orbifold

[J. Davey]

Dimensional reduction to type IIA

- Zoom to near-horizon $\Rightarrow AdS_4 \times S^7/\mathbb{Z}_k$ SUGRA
- Radius of compact direction $R/k\ell_p = 2^{5/6}\pi^{1/3}(N_ck)^{1/6}/k$
- sending the Chern-Simons level $k \to \infty$ gives type IIA string theory
- Branes become: M2->D2

Quarks

From now, working in the type IIA background N_f D6-(probe) brane is inserted $\Rightarrow N_f$ flavour degrees of freedom

Quarks

From now, working in the type IIA background N_f D6-(probe) brane is inserted $\Rightarrow N_f$ flavour degrees of freedom

Quark mass

String theory: quark $\hat{}$ string between D6 and D2 branes

String theory: quark mass $\hat{=}$ length of this string

Holographic principle: length at boundary

Quarks

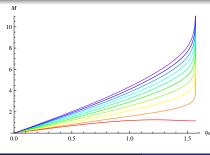
From now, working in the type IIA background N_f D6-(probe) brane is inserted $\Rightarrow N_f$ flavour degrees of freedom

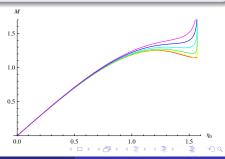
Quark mass

String theory: quark $\hat{}$ string between D6 and D2 branes

String theory: quark mass $\hat{=}$ length of this string

Holographic principle: length at boundary





Introduce U(1) gauge field A_{μ} living on D6-brane Gauge field A_{μ} gauged to have A_t the only nonvanishing component

Generalized action

action: Minimal area law

S
$$\propto \int \mathrm{d}\sigma^{1+6} \sqrt{-\det(\mathcal{P}[g])}$$

Introduce U(1) gauge field A_{μ} living on D6-brane Gauge field A_{μ} gauged to have A_t the only nonvanishing component

Generalized action

DBI-action: Minimal area law + field strength tensor $\emph{F}_{\mu\nu}=\partial_{\mu}\emph{A}_{\nu}-\partial_{\nu}\emph{A}_{\mu}$

$$S_{\text{DBI}} \propto \int \mathrm{d}\sigma^{1+6} \sqrt{-\det(\mathcal{P}[g] + 2\pilpha'F)}$$

Introduce U(1) gauge field A_{μ} living on D6-brane Gauge field A_{μ} gauged to have A_t the only nonvanishing component

Generalized action

DBI-action: Minimal area law + field strength tensor $\emph{F}_{\mu\nu}=\partial_{\mu}\emph{A}_{\nu}-\partial_{\nu}\emph{A}_{\mu}$

$$S_{\text{DBI}} \propto \int \mathrm{d}\sigma^{1+6} \sqrt{-\det(\mathcal{P}[g] + 2\pilpha'F)}$$

Action for D6-brane

$$S_{\text{D6}} \propto \int \text{d}\chi \; \chi^{-4} \left[2\cos\eta \sqrt{1 + \eta'^2 \, \chi^2 (1-\chi^3) - \chi^4 (\partial_\chi A_t)^2} - \sin^2\eta \right]$$

Introduce U(1) gauge field A_{μ} living on D6-brane Gauge field A_{μ} gauged to have A_{t} the only nonvanishing component

Generalized action

DBI-action: Minimal area law + field strength tensor $\emph{F}_{\mu\nu}=\partial_{\mu}\emph{A}_{\nu}-\partial_{\nu}\emph{A}_{\mu}$

$$S_{\text{DBI}} \propto \int \mathrm{d}\sigma^{1+6} \sqrt{-\det(\mathcal{P}[g] + 2\pilpha'F)}$$

Action for D6-brane

$$S_{D6} \propto \int d\chi \; \chi^{-4} \left[2\cos\eta \sqrt{1+\eta'^2\,\chi^2(1-\chi^3)-\chi^4(\partial_\chi A_t)^2} - \sin^2\eta \right]$$

Before embedding can be computed: Solve for $\partial_x A_t$

Chemical potential

Action for D6-brane

$$S_{D6} \propto \int d\chi \; \chi^{-4} \left[2\cos\eta \sqrt{1+\eta'^2\,\chi^2(1-\chi^3)-\chi^4(\partial_\chi A_t)^2} - \sin^2\eta \right]$$

Asymptotics of gauge field

At the boundary of AdS ($\chi \rightarrow 0$)

$$A_t = \mu - d\chi$$

Introduction of chemical potential μ and baryon density d!

Chemical potential

Action for D6-brane

$$S_{D6} \propto \int d\chi \; \chi^{-4} \left[2\cos\eta \sqrt{1+\eta'^2\,\chi^2(1-\chi^3)-\chi^4(\partial_\chi A_t)^2} - \sin^2\eta \right]$$

Asymptotics of gauge field

At the boundary of AdS ($\chi \rightarrow 0$)

$$A_t = \mu - d\chi$$

Introduction of chemical potential μ and baryon density d!

EOM for gauge field

Solving the equation of motion for the gauge field

$$\partial_{\chi} A_t = d \sqrt{\frac{1 + \eta'^2 \, \chi^2 (1 - \chi^3)}{4 \cos^2 \eta + d^2 \chi^4}} \quad \mu = -d \int_0^1 \mathrm{d}\chi \sqrt{\frac{1 + \eta'^2 \, \chi^2 (1 - \chi^3)}{4 \cos^2 \eta + d^2 \chi^4}}$$

Scalar excitations

Scalar fluctuations

Fluctuations of the brane in one component $\eta(\chi)$ scalar mode $\eta(\chi) \to \eta(\chi) + \delta \eta(\sigma^i)$

Scalar excitations

Scalar fluctuations

Fluctuations of the brane in one component $\eta(\chi)$ scalar mode $\eta(\chi) \to \eta(\chi) + \delta \eta(\sigma^i)$

Vector fluctuations

Fluctuations of the gauge field $A_{\mu}(\chi)$ vector mode $A_{\mu}(\chi) \rightarrow A_{\mu}(\chi) + \delta A_{\mu}(\sigma^{i})$

Scalar excitations

Scalar fluctuations

Fluctuations of the brane in one component $\eta(\chi)$ scalar mode $\eta(\chi) \to \eta(\chi) + \delta \eta(\sigma^i)$

Vector fluctuations

Fluctuations of the gauge field $A_{\mu}(\chi)$ vector mode $A_{\mu}(\chi) \rightarrow A_{\mu}(\chi) + \delta A_{\mu}(\sigma^{i})$

Equations of motion for fluctuations

Plug into DBI-action and expand to 2nd order in the fluctuations Equations of Motion are partial differential equations

Fourier trafo
$$\delta\eta(\chi,\vec{x})=\int\frac{\mathrm{d}^4k}{(2\pi)^4}\mathrm{e}^{\mathrm{i}\vec{k}\vec{x}}\delta\eta(\chi,\vec{k})$$
 with $\vec{k}=(\omega,0,q)$

Linear eom $\partial_{\chi}^{2}(\delta\eta) + \mathfrak{C}_{1}\partial_{\chi}(\delta\eta) + \mathfrak{C}_{2}(\delta\eta) = 0$

The spectral function

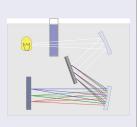
Definition

The spectral function is related to the retarded correlator G^R by

$$\mathfrak{R}=-2\mathrm{Im}\;G^R$$
 where $G^R(k)=-\mathrm{i}\int\mathrm{d}x^4\;\mathrm{e}^{\mathrm{i}kx} heta(x^0)\langle[J(x),J(0)]
angle$

$$\text{with} \quad \textit{G}^{\textit{R}} = \frac{\delta^2 \textit{S}_{\text{SUGRA}}}{\delta \tilde{\textit{A}}^2} \bigg|_{\text{boundary}}$$

[Son, Starinets, '02]



The spectral function

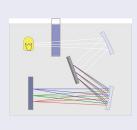
Definition

The spectral function is related to the retarded correlator G^R by

$$\mathfrak{R}=-2\mathrm{Im}\;G^R$$
 where $G^R(k)=-\mathrm{i}\int\mathrm{d}x^4\;\mathrm{e}^{\mathrm{i}kx} heta(x^0)\langle[J(x),J(0)]
angle$

$$\text{with} \quad \textit{G}^{\textit{R}} = \frac{\delta^2 \textit{S}_{\text{SUGRA}}}{\delta \tilde{\textit{A}}^2} \bigg|_{\text{boundary}}$$

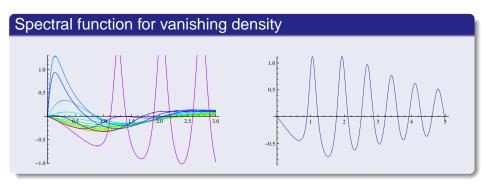
[Son, Starinets, '02]



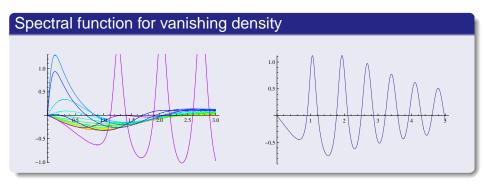
In our coordinates

$$\Re(\omega, ec{m{q}} = \mathbf{0}) \propto \mathrm{Im} \; rac{\partial_\chi \eta}{\eta}ig|_{\mathrm{boundary}}$$

Numerical Calculation



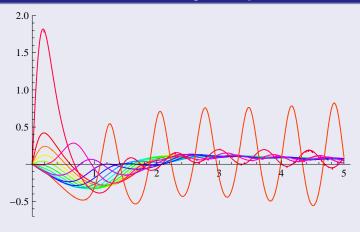
Numerical Calculation



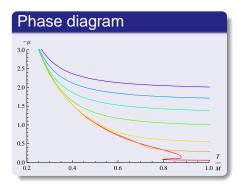
- higher quark mass gives very pronounced peaks
- expected from earlier studies in D3/D7

Numerical Calculation

Spectral function for non-vanishing density

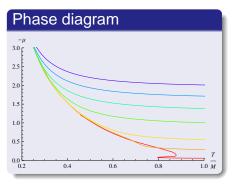


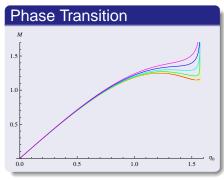
Phase diagram



PROBLEM: loops indicate an instability

Phase diagram





PROBLEM:

loops indicate an instability

SOLUTION:

comparison with the embeddings indicates that instability lies at the phase transition

Connection still very loose – work in progress!

Connection still very loose – work in progress!

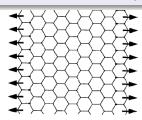
- Materials with defects, lower dimensional i. e. graphene
- Electrons confined to a lower-dimensional subspace
- Luttinger-Liquid: 1d electron gas, behaves as a quantum liquid But no description with Fermi-Landau possible!
- realised on the edge of a graphene sheet

Connection still very loose – work in progress!

- Materials with defects, lower dimensional i. e. graphene
- Electrons confined to a lower-dimensional subspace
- Luttinger-Liquid: 1d electron gas, behaves as a quantum liquid But no description with Fermi-Landau possible!
- realised on the edge of a graphene sheet

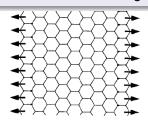
Connection still very loose – work in progress!

- Materials with defects, lower dimensional i. e. graphene
- Electrons confined to a lower-dimensional subspace
- Luttinger-Liquid: 1d electron gas, behaves as a quantum liquid But no description with Fermi-Landau possible!
- realised on the edge of a graphene sheet



Connection still very loose – work in progress!

- Materials with defects, lower dimensional i. e. graphene
- Electrons confined to a lower-dimensional subspace
- Luttinger-Liquid: 1d electron gas, behaves as a quantum liquid But no description with Fermi-Landau possible!
- realised on the edge of a graphene sheet



- AdS₄: codimension 0,1 or 2 defect
- here: codimension 0 defect
- calculated in [Erdmenger et al., 0909.3845]

Conclusion

Summary

- M-theory geometry and reduction to type IIA
- Embedding with phase transition
- Chemical potential
- Scalar and vector fluctuations on the brane

Conclusion

Summary

- M-theory geometry and reduction to type IIA
- Embedding with phase transition
- Chemical potential
- Scalar and vector fluctuations on the brane

Outlook

- Connection to condensed matter systems
- Compute further observables: quark condensate,...
- Build in chirality

Conclusion

Thank you for your attention!

