Software Compensation in a Highly Granular Calorimeter

Katja Seidel

Max-Planck-Institut für Physik & Excellence Cluster 'Universe'

28.07.2009 IMPRS/GK Young Scientist Workshop at Ringberg Castle

Outline

Use the advantages of a highly granular calorimeter to develop software compensation techniques to improve the energy resolution of the calorimeter.

- 1 Hadronic Showers in a calorimeter
- **2** Software Compensation
 - Idea
 - Advantage of high granularity
 - Methods
- **3** Software Compensation in ILD
 - Detector and reconstruction design
 - Development of software compensation technique
 - Results

4 Summary and Outlook

Energy measurement in a sampling calorimeter:

- successive layers of active a passive material
- energy loss of incoming particle depends on particle type (ionization, electromagnetic interaction, hadronic interaction)

Hadronic showers:

- dominated by succession of inelastic hadronic interactions
 - \Rightarrow production of secondary particles (π^+, π^-, π^0, n)
- structure/composition of hadronic showers depend on produced particles in the shower
- Iarge event-to-event fluctuations \rightarrow no "typical hadronic shower"
- Two scales for the hadronic shower cascade:
 - \blacksquare strongly interaction part \rightarrow HAD energy scale
 - electromagnetic part \rightarrow EM energy scale

Hadronic showers

- **u** mostly production of π^0 gives electromagnetic shower component
- all energy of electromagnetic shower component is detectable
- \blacksquare hadronic showers: certain fraction of energy is undetectable \rightarrow invisible energy
- invisible energy due to excitation and nuclear breakup
- $\frac{e}{\pi} > 1$ at same energy of e and π for a non-compensation calorimeter
- $\frac{e}{\pi}$ ratio depends on energy

 \Rightarrow worsens energy resolution

Most experiments have non-compensating calorimeters $\frac{e}{\pi} = 1$ with software compensation \Rightarrow distinguish between em. and had. shower parts

electromagnetic showers tend to be denser than hadronic ones

- Local software compensation technique
 - the higher the hit energy density, the higher the propability to be an em shower component
- Global software compensation technique
 - the higher the cluster energy density, the higher the propability to have a high em component

What is the benefit from a highly granular calorimeter?

- Large number of cells, small cell sizes
- More details of hadronic shower components
- Shower variables can be measured with higher precision
- \Rightarrow Software Compensation should be very powerful

- CALICE develops calorimeters with high granularity and new technologies
- Test beam data with $\pi^-, \pi^+, p, e^-, e^+$
- Simulated data

CALICE test beam program

Electromagnetic Calorimeter (ECAL)

- 30 silicon layers (active area 18×12 cm²)
- 1.4 mm, 2.8 mm, 4.2 mm thick tungsten absorber plates $(0.9 \lambda, 30 X_0)$
- each layer divided in 6×6 modules; 1×1 cm² readout-pads

Hadronic Calorimeter (HCAL)

- 38 layers
- 2 cm thick steel absorber plates (5.3λ)
- scintillator tile sizes $3 \times 3 \text{ cm}^2$ in center, $6 \times 6 \text{ cm}^2$, $12 \times 12 \text{ cm}^2$ (≈ 8000 channels)

Tail Catcher/ Muon Tracker (TCMT)

- 16 scintillator layers (active area 1×1 m²)
- 1.9 cm, 10.2 cm thick absorber plates (5.8 λ)
- each layer 20 100×5 cm² scintillators

Energy Measurement

- Hadronic interactions take place in the absorber layers
- Energy loss mostly due to ionization in the active layers

CALICE

- In active layer the energy is measured in units of the energy deposition of one penetrating minimum ionizing particles (MIP)
- One MIP deposits approx. 30 MeV in one active HCAL cell
- Conversion factor k transforms from the calibration scale to the energy scale $E_{\rm rec}[{\rm GeV}] = \sum_{hit} E_{hit}[{\rm MIP}] \cdot k$
- k is constant

Methods

1 Single Hit Weighting:

- Local technique
- Treats every hit separately \rightarrow every hit gets a different weight in the overall energy sum $E_{\text{rec}}[\text{GeV}] = \sum_{hit} E_{hit}[\text{MIP}] \cdot \omega_{hit}$
- Weights ω_{hit} depend on the hit energy density and the initial reconstructed energy $\sum_{hit} E_{hit}$

2 Cluster Weighting:

- Global method
- Cluster is treated as a whole
- One weight per cluster $E_{cluster}[GeV] = E_{cluster}[MIP] \cdot \omega_{cluster}$
- Weights ω_{cluster} depend on cluster energy density and initial reconstructed energy E_{cluster}[MIP]

3 Neural Network:

- Global method
- Cluster variables determination (cluster energy, cluster volume, cluster length, cluster width,...)
- Cluster variables are feed to a neural net
- Output of neural net is cluster energy $E_{cluster}[GeV]$

Methods

Goodness criteria:

 \blacksquare Improvement in width of the reconstructed energy Histogram for a 40 GeV π^-

Methods

Goodness criteria:

- \blacksquare Improvement in width of the reconstructed energy Histogram for a 40 GeV π^-
- Software compensation should work for data and MC independent of the data set from which the weights are extracted

- Improvement of energy resolution due to high granular calorimeter
- CALICE ECAL and HCAL very similar to ILD calorimeter
- Software Compensation extracted from Monte Carlo works for test beam data
- Software Compensation should work in ILD

The International Large Detector (ILD) for the ILC

ILC:

- e⁺e⁻ machine
- \blacksquare $E_{
 m cms}$ up to 500 GeV
- peak luminosity $2 \times 10^{34} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$

ILD one Detector design:

- Vertex detector
- TPC (224 points per track, 1.8 m outer radius)
- SiW ECAL (cell size $1 \times 1 \, \mathrm{cm}^2$)
- Analog Scint/Fe HCAL (cell size $3 \times 3 \, \mathrm{cm}^2$)
- Magnet for field of 3.5 Tesla
- Iron retrun yoke
 - \Rightarrow excellent spatial resolution
 - \Rightarrow optimized for Particle Flow

Principle of Particle Flow with PandoraPFA

Concept:

- momenta of charged particles measured with tracking detectors
- energy of photons and neutral hadrons measured with calorimeter system
- assign correct hits to reconstructed particle \rightarrow separation of nearby showers

 Software Compensation for the energy reconstruction of neutral hadrons after the full reconstruction (cluster hits in ECAL and/or HCAL)

- Software Compensation for the energy reconstruction of neutral hadrons after the full reconstruction (cluster hits in ECAL and/or HCAL)
- Local weighting technique corrected energy: $E_{\text{rec}}[\text{GeV}] = \sum_{hit} E_{hit}[\text{GeV}] \cdot \omega_{hit}$

- Software Compensation for the energy reconstruction of neutral hadrons after the full reconstruction (cluster hits in ECAL and/or HCAL)
- Local weighting technique corrected energy: $E_{\text{rec}}[\text{GeV}] = \sum_{hit} E_{hit}[\text{GeV}] \cdot \omega_{hit}$
- Extraction of weights ω_{hit} :

- Software Compensation for the energy reconstruction of neutral hadrons after the full reconstruction (cluster hits in ECAL and/or HCAL)
- Local weighting technique corrected energy: $E_{\text{rec}}[\text{GeV}] = \sum_{hit} E_{hit}[\text{GeV}] \cdot \omega_{hit}$
- Extraction of weights ω_{hit} :
 - Extraction of single cell energy density
 - Find best ω_{hit} for every hit energy density Minimization of function $\chi = E_{true} - E_{rec}$

- Software Compensation for the energy reconstruction of neutral hadrons after the full reconstruction (cluster hits in ECAL and/or HCAL)
- Local weighting technique corrected energy: $E_{\text{rec}}[\text{GeV}] = \sum_{hit} E_{hit}[\text{GeV}] \cdot \omega_{hit}$
- Extraction of weights ω_{hit} :
 - Extraction of single cell energy density
 - Find best ω_{hit} for every hit energy density Minimization of function $\chi = E_{true} - E_{rec}$
 - Find energy dependent parameterization of weights ω_{hit} (lower weight for higher energy density)

- Software Compensation for the energy reconstruction of neutral hadrons after the full reconstruction (cluster hits in ECAL and/or HCAL)
- Local weighting technique corrected energy: $E_{\text{rec}}[\text{GeV}] = \sum_{hit} E_{hit}[\text{GeV}] \cdot \omega_{hit}$
- Extraction of weights ω_{hit} :
 - Extraction of single cell energy density
 - Find best ω_{hit} for every hit energy density Minimization of function $\chi = E_{true} - E_{rec}$
 - Find energy dependent parameterization of weights ω_{hit} (lower weight for higher energy density)

Weight parameterization application/ Input:

- hit energy density
- hadronic cluster energy

Improvement:

Software Compensation applied on simulated K_L^0 events:

Test of calorimeter performance

• Test on independent data set n, K_L^0 at various energies

Resolution given by the calorimeters only

 \Rightarrow Energy resolution improvement approx. 20 %

$e^+e^- \rightarrow Z \rightarrow q\bar{q}$

- Use realistic e^+e^- events at various energies $\Rightarrow e^+e^- \rightarrow Z^* \rightarrow q\bar{q}(uds)$
- Full particle flow performance Only energy of neutral hadrons is taken from the calorimeters
- Gaussian fit for $E_{\rm rec}$, RMS90 for width

reconstructed energy [GeV]

$E_{\rm cms}$ [GeV]	91	200	360	500	
Default					
RMS90/ $E_{\rm rec}$ [%]	2.82±0.02	2.49±0.02	2.61±0.02	$2.81{\pm}0.02$	
Software Compensation					
RMS90/ <i>E</i> _{rec} [%]	2.79±0.02	$2.38{\pm}0.02$	2.51 ± 0.02	2.70±0.02	
Improvement [%]	1.06	4.42	3.83	3.91	

How much improvement do we expect?

Software compensation improves neutral hadrons by approx. 20 %
ILD events: approx. 10 % of the energy is carried by neutral hadrons

How much improvement do we expect?

■ Software compensation improves neutral hadrons by approx. 20 %
 ■ ILD events: approx. 10 % of the energy is carried by neutral hadrons
 ⇒ Expect approx. 2 % resolution improvement for E_{cms}

How much improvement do we expect?

Software compensation improves neutral hadrons by approx. 20 %

■ ILD events: approx. 10 % of the energy is carried by neutral hadrons

 \Rightarrow Expect approx. 2 % resolution improvement for $E_{\rm cms}$

Check MC particleID of leading cluster particle for particles marked as neutral hadrons.

$E_{\rm cms}$	200 GeV
Photons	24 %
Charged EM particles	2 %
Charged HAD particles	22 %
Neutral HAD particles	52 %

- Photons and electrons in the ECAL should be on the electromagnetic energy scale
- Software Compensation could correct energy of photons in the ECAL from the hadronic scale to the electromagnetic scale

So far...

- Different software compensation techniques work for Monte Carlo and test beam data
- Software compensation integrated into particle flow reconstruction
 - Software Compensation improve energy determination of neutral hadrons
 - Software Compensation corrects energy scale of wrongly assigned particles

Coming up...

- Improvement of software compensation technique
- Help to improve/cross check particle flow algorithm
- Physics analysis with and without software compensation applied