The Timing of Hadronic Showers in a Highly Granular Scintillator-Tungsten Calorimeter

Christian Soldner

Max-Planck-Institut für Physik

Young Scientists Workshop Castle Ringberg, July 2010

Outline

Shower Timing

C. Soldner

Readout
Physics Cas
Summary

- Motivation: CLIC, CALICE and Shower Timing
- 2 The Shower Timing Experiment
- The Physics Case Simulation Studies
- 4 Summary and Conclusion

Outline

Shower Timing

C. Soldner

Introduction

Physics Case Summary

- Motivation: CLIC, CALICE and Shower Timing
- 2 The Shower Timing Experiment
- The Physics Case Simulation Studies
- 4 Summary and Conclusion

The Motivation:

Access the TeV Scale with a Linear e^+e^- -Collider

Shower

C. Soldner

Introduction

Readout Physics Case The Energy of the next Linear Collider is still unclear:

ightarrow Depends on what LHC finds!

- Existing Concept: The ILC with 500 GeV CMS
- But maybe we need a Multi-TeV Collider (new CLIC Concept)
- The Challenge (for us): Calorimetry at such a Collider is difficult!

Key issue: Leakage

We need a very deep HCAL to contain the Showers

But: Costs of the magnet increases drastically with its radi

⇒ Alternative: Use a very dense absorber:

Steel (\sim 8g/cm 3) \rightarrow consider tungsten (\sim 19g/cm

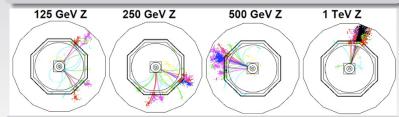
The Motivation:

Access the TeV Scale with a Linear e^+e^- -Collider

Shower Timing

C. Soldner

Introduction


Readout

Summary

The Energy of the next Linear Collider is still unclear:

 \rightarrow Depends on what LHC finds!

- Existing Concept: The ILC with 500 GeV CMS
- But maybe we need a Multi-TeV Collider (new CLIC Concept)
- The Challenge (for us): Calorimetry at such a Collider is difficult!

Kev issue: Leakage

We need a very deep HCAL to contain the Showers

But: Costs of the magnet increases drastically with its radius

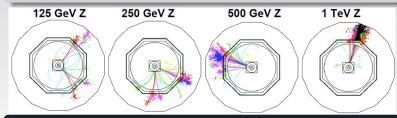
⇒ Alternative: Use a very dense absorber:

Steel ($\sim 8 \mathrm{g/cm}^3$) \rightarrow consider tungsten ($\sim 19 \mathrm{g/cm}^3$

The Motivation:

Access the TeV Scale with a Linear e^+e^- -Collider

Shower


C. Soldner

Introduction

Readout Physics Case The Energy of the next Linear Collider is still unclear:

ightarrow Depends on what LHC finds!

- Existing Concept: The ILC with 500 GeV CMS
- But maybe we need a Multi-TeV Collider (new CLIC Concept)
- The Challenge (for us): Calorimetry at such a Collider is difficult!

Key issue: Leakage

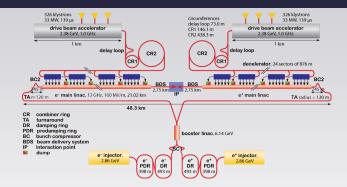
We need a very deep HCAL to contain the Showers

But: Costs of the magnet increases drastically with its radius

⇒ Alternative: Use a very dense absorber:

Steel ($\sim 8 \text{g/cm}^3$) \rightarrow consider tungsten ($\sim 19 \text{g/cm}^3$)

The Compact Linear Collider: CLIC


Shower Timing

C. Soldner

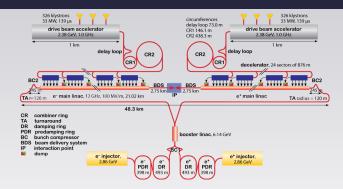
Introduction Readout

Physics Cas

Physics Car

Future Linear e^+e^- -Collider: Key Parameters		
CMS energy:	3 TeV	
Linac repetition rate:	50 Hz	
Bunch train length:	156 ns	
No. of bunches / pulse:	312	
Bunch separation:	0.5 ns (note: 25 ns @ LHC)	

The Compact Linear Collider: CLIC


Shower Timing

C. Soldner

Introduction Readout

Physics Cas

Summary

Future Linear e^+e^- -Collider: Key Parameters		
CMS energy:	3 TeV	
Linac repetition rate:	50 Hz	
Bunch train length:	156 ns	
No. of bunches / pulse:	312	
Bunch separation:	0.5 ns (note: 25 ns @ LHC)	

Consequences of the Ultra-Short Bunch Separation

Shower Timing

C. Soldner

Introduction

Readout

Physics Case

Summary

Background at a Multi-TeV e^+e^- -Collider: $\gamma\gamma$ – Interaction

- ullet Source: Beamstrahlung, Beam Focussing \Rightarrow Bremsstrahlung ...
- 500 GeV (ILC): $\gamma\gamma \to \text{Leptons}$ predominant (mainly @ low E)
- Multi-TeV (CLIC): $\gamma\gamma \to q\bar{q} \to Jets$ CH open up (0 high E)
 - \Rightarrow High σ for fake Jets at CLIC likely to enter Detector
 - \Rightarrow High occurrence: \sim 3.3 Events/BunchX , \sim 13 Particles/BunchX
 - \Leftrightarrow Rate of interesting physics events (e.g. $q\bar{q}$):

« 1/BunchTrain

4D Detector Necessary

- Avoid accumulation of backgr. events: ∼1k per 156 ns (± 1 Bunch Train)
- In bunch train: Match Events with individual bunch crossings
 ⇒ Needs good time resolution in all detectors → also in calorimeters
- ullet Distinguish Physics and $\gamma\gamma$ Events through Energy and Timing Info

Consequences of the Ultra-Short Bunch Separation

Shower

C. Soldner

Introduction Readout

Physics Case

Background at a Multi-TeV e^+e^- -Collider: $\gamma\gamma$ – Interaction

- ullet Source: Beamstrahlung, Beam Focussing \Rightarrow Bremsstrahlung ...
- ullet 500 GeV (ILC): $\gamma\gamma o$ Leptons predominant (mainly @ low E)
- Multi-TeV (CLIC): $\gamma\gamma \to q\bar{q} \to Jets$ CH open up (0 high E)
 - \Rightarrow High σ for fake Jets at CLIC likely to enter Detector
 - \Rightarrow High occurrence: \sim 3.3 Events/BunchX , \sim 13 Particles/BunchX
 - \Leftrightarrow Rate of interesting physics events (e.g. $q\bar{q}$):

« 1/BunchTrain

4D Detector Necessary

- Avoid accumulation of backgr. events: ~1k per 156 ns (± 1 Bunch Train)
- In bunch train: Match Events with individual bunch crossings
 ⇒ Needs good time resolution in all detectors → also in calorimeters!
- Distinguish Physics and $\gamma\gamma$ Events through Energy and Timing Info \Rightarrow Algorithms for that still have to be invented!!!

Challenges for Calorimetry

Shower Timing

C. Soldner

Introduction

Readout Physics Case

Questions:

- Can those requirements be met?
- What is the influence of the time structure of the hadronic showers themselves? How to choose the energy integration time?
- How well does Tungsten work as an absorber for a Particle Flow HCAL? How do showers evolve?

Tungsten vs. Steel

- very different λ/X₀ ratio
 → em subshowers very short
- heavier nucleus: More neutrons in the shower
 → cause late energy depositions through nuclear excitation processes

Material	Fe	W
λ_I [cm]	16.77	9.95
X_0 [cm]	1.76	0.35
dE/dx [MeV/cm]	11.4	22.1
R _M [cm]	1.72	0.93

Challenges for Calorimetry

Shower Timing

C. Soldner

Introduction Readout

Physics Case Summary

Questions:

- Can those requirements be met?
- What is the influence of the time structure of the hadronic showers themselves? How to choose the energy integration time?
- How well does Tungsten work as an absorber for a Particle Flow HCAL? How do showers evolve?

Tungsten vs. Steel

- very different λ/X_0 ratio \rightarrow em subshowers very short
- heavier nucleus: More neutrons in the shower
 - → cause late energy depositions through nuclear excitation processes

Material	Fe	W
λ_I [cm]	16.77	9.95
X ₀ [cm]	1.76	0.35
dE/dx [MeV/cm]	11.4	22.1
R _M [cm]	1.72	0.93

Challenges for Calorimetry

Shower Timing

C. Soldner

Introduction

Physics Case

Questions:

- Can those requirements be met?
- What is the influence of the time structure of the hadronic showers themselves? How to choose the energy integration time?
- How well does Tungsten work as an absorber for a Particle Flow HCAL? How do showers evolve?

Beam tests needed to answer the questions and to take on the challenges!

Outline

Shower Timing

C. Soldner

Readout

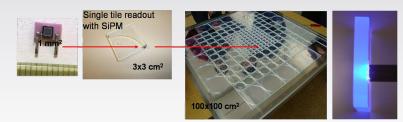
Physics Case

- Motivation: CLIC, CALICE and Shower Timing
- 2 The Shower Timing Experiment
- The Physics Case Simulation Studies
- 4 Summary and Conclusion

What we have:

The CALICE Analog Hadron Calorimeter (AHCAL)

Shower Timing


C. Soldner

Introductio

Readout

Physics Case Summary **CALICE**: Test beam program to evaluate technologies for particle flow calorimetry

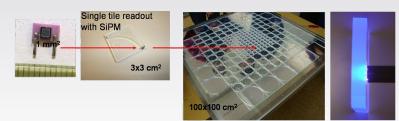
- Sampling calorimeter with alternating layers of
 - Steel absorber plates (Thickness: 2 cm)
 - 4 Highly granular pattern of plastic scintillator cells
 - \rightarrow Enable precise particle separation within the shower of a jet
- Well tested prototype: TB Runs @ CERN 06/07 and FNAL 08/09

- + 3D reconstruction of hadronic shower shapes
- no timing information on the shower development
- ⇒ The Dream: 4D Calorimetry

What we have:

The CALICE Analog Hadron Calorimeter (AHCAL)

Shower Timing


C. Soldner

Introductio

Readout

Physics Cas Summary **CALICE**: Test beam program to evaluate technologies for particle flow calorimetry

- Sampling calorimeter with alternating layers of
 - Steel absorber plates (Thickness: 2 cm)
 - Highly granular pattern of plastic scintillator cells
 - \rightarrow Enable precise particle separation within the shower of a jet
- Well tested prototype: TB Runs @ CERN 06/07 and FNAL 08/09

- + 3D reconstruction of hadronic shower shapes
- no timing information on the shower development
- ⇒ The Dream: 4D Calorimetry

What is planned: CALICE TB with W Absorber and Timinig Parasite

Shower Timing

C. Soldner

Introduction

Readout

Physics Cas

CALICE Plans

- Buy tungsten absorber plates: Need ~5 Tons (being delivered by now)
 Note: Steel: 5-10€/kg ⇔ W: 100€/kg (size of Mars bar)
- Reuse the active CALICE Layers
- Aim: 3D Study hadron showers in a highly granular W HCAL
- ⇒ Testbeam at CERN PS logged for November 2010

Our Plans (together with the CALICE Collaboration)

- Create 1 Layer with 16 Scintillator Tiles (designed to replace 1 HCAL Layer
- Readout with fast Digitizer → 1.25 GSa/s =800 ps between two
- Aim: Obtain time resolved development of hadronic showers
- Needs: Synch, with the CALICE trigger to determine shower start

What is planned:

<u>CALICE TB</u> with W Absorber and Timinig Parasite

Shower Timing

C. Soldner

Readout

CALICE Plans

- Buy tungsten absorber plates: Need \sim 5 Tons (being delivered by now) Note: Steel: $5-10 \in /kg \Leftrightarrow W$: $100 \in /kg$ (size of Mars bar)
 - Reuse the active CALICE Layers
- Aim: 3D Study hadron showers in a highly granular W HCAL
- ⇒ Testbeam at CERN PS logged for November 2010

1000

Our Plans (together with the CALICE Collaboration)

- Create 1 Layer with 16 Scintillator Tiles (designed to replace 1 HCAL Layer)
- Readout with fast Digitizer → 1.25 GSa/s =800 ps between two measurement points (Note: 1k€per Ch)
- Aim: Obtain time resolved development of hadronic showers
- Needs: Synch with the CALICE trigger to determine shower start

The Intrinsic Signal of Scintillator Tiles

Shower Timing

C. Soldner

Readout

Physics Cas

Summary

Direct Coupling

WLS adds additional delay to photon signal (excitation process)

⇒ Couple photomultiplier directly to the scintillator tile (Possible through recent development of blue-sensitive SiPMs)

⇒ **Needs**: Modification of tile geometry to obtain uniform response to penetrating particles (actually my diploma thesis)

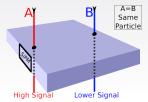
The Intrinsic Signal of Scintillator Tiles

Shower Timing

C. Soldner

Readout

Physics Cas


Summary

Direct Coupling

WLS adds additional delay to photon signal (excitation process)

- ⇒ Couple photomultiplier directly to the scintillator tile
- (Possible through recent development of blue-sensitive SiPMs)
- ⇒ Needs: Modification of tile geometry to obtain uniform response to penetrating particles (actually my diploma thesis)

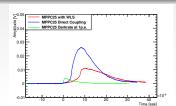
The Intrinsic Signal of Scintillator Tiles

Shower Timing

C. Soldner

Readout

Physics Cas


Direct Coupling

WLS adds additional delay to photon signal (excitation process)

- \Rightarrow Couple photomultiplier directly to the scintillator tile
- (Possible through recent development of blue-sensitive SiPMs)
- ⇒ Needs: Modification of tile geometry to obtain uniform response to penetrating particles (actually my diploma thesis)

Result from the test bench:

- Position Sr^{90} on the tile (β -Decay)
- Record and average the signal of 500 penetrating e^-
- Direct Coupling: Signal is faster and fast peaking (!)

Outline

Shower Timing

C. Soldner

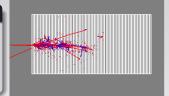
Introductio Readout

Physics Case

- 1 Motivation: CLIC, CALICE and Shower Timing
- 2 The Shower Timing Experiment
- The Physics Case Simulation Studies
- 4 Summary and Conclusion

Shower Timing

C. Soldner


Introduction Readout

Physics Case

Summary

Simulations:

- 32 Layers W interleaved by 32 Layers of scintillator (CALICE-like)
- 200k π^- Events @ 3,5,7,10,12GeV (E_{max} of PS)

1.: Analysis of Timing Strip:

- Analyze one horizontal strip of 31 scintillator cells (size $3 \times 3 \times 0.5$ cm³
- Focus on time stamp and height of E depositions in these cells
- Longitudinal position flexible (here: Layer 10,20,30)
- Find start point of the hadron shower
 - ⇒ Determine strip position relative to shower start
 - ⇒ Reconstruct the timing of the shower development

2.: Analysis of All active Layers (No Shower Start Finder):

Shower Timing


C. Soldner

Introduction Readout

Physics Case

Simulations:

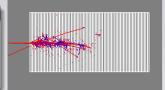
- 32 Layers W interleaved by 32 Layers of scintillator (CALICE-like)
- 200k π^- Events @ 3,5,7,10,12GeV (E_{max} of PS)

1.: Analysis of Timing Strip:

- \bullet Analyze one horizontal strip of 31 scintillator cells (size 3 \times 3 \times 0.5 cm³)
- Focus on time stamp and height of E depositions in these cells
- Longitudinal position flexible (here: Layer 10,20,30)
- Find start point of the hadron shower
 - ⇒ Determine strip position relative to shower start
- ⇒ Reconstruct the timing of the shower development

2.: Analysis of All active Layers (No Shower Start Finder)

Shower Timing


C. Soldner

Introduction Readout

Physics Case

Simulations:

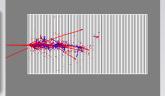
- 32 Layers W interleaved by 32 Layers of scintillator (CALICE-like)
- 200k π^- Events @ 3,5,7,10,12GeV (E_{max} of PS)

1.: Analysis of Timing Strip:

- Analyze one horizontal strip of 31 scintillator cells (size 3 \times 3 \times 0.5 cm³)
- Focus on time stamp and height of E depositions in these cells
- Longitudinal position flexible (here: Layer 10,20,30)
- Find start point of the hadron shower
 - ⇒ Determine strip position relative to shower start
 - ⇒ Reconstruct the timing of the shower development

2.: Analysis of All active Layers (No Shower Start Finder)

Shower Timing


C. Soldner

Introduction Readout

Physics Case

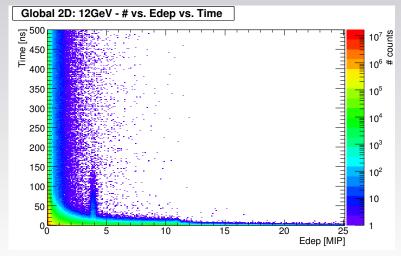
Simulations:

- 32 Layers W interleaved by 32 Layers of scintillator (CALICE-like)
- 200k π^- Events @ 3,5,7,10,12GeV (E_{max} of PS)

1.: Analysis of Timing Strip:

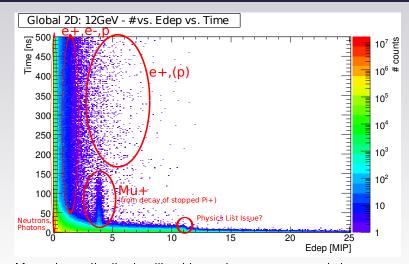
- Analyze one horizontal strip of 31 scintillator cells (size 3 × 3 × 0.5 cm³)
- Focus on time stamp and height of E depositions in these cells
- Longitudinal position flexible (here: Layer 10,20,30)
- Find start point of the hadron shower
 - ⇒ Determine strip position relative to shower start
 - ⇒ Reconstruct the timing of the shower development

2.: Analysis of All active Layers (No Shower Start Finder):


Rich Time Structure in a Tungsten Calorimeter Problem for a Timing HCAL?

Readout

Physics Case


Measuring a distribution like this requires enormous statistics ⇒ In Test Beam Experiment: Only possible with high trigger rate

Shower

Rich Time Structure in a Tungsten Calorimeter Problem for a Timing HCAL?

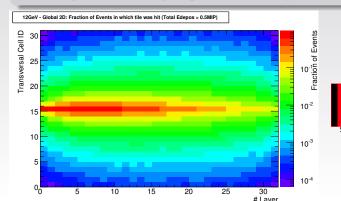
Measuring a distribution like this requires enormous statistics

⇒ In Test Beam Experiment: Only possible with high trigger rate

Hit Probability of Timing Strip

Shower Timing

C. Soldner


Introduction Readout

Physics Case

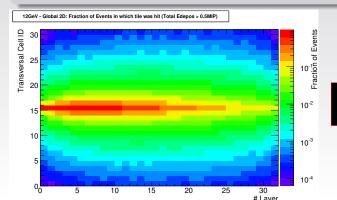
e

- CALICE is the main user of the test beam period
 - ullet During 95% of the time o timing strip at Layer 30 o low statistics
- Need about 200k Events or more!
- Luckily: On the last day we get to choose the position

Hit Probability of Timing Strip

Shower Timing

C. Soldner


Introduction

Readout

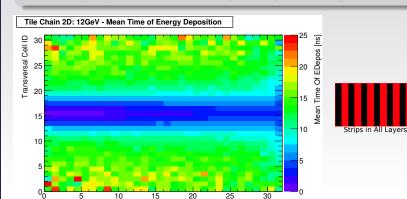
Physics Case

S.,

- CALICE is the main user of the test beam period
- During 95% of the time \rightarrow timing strip at Layer 30 \rightarrow low statistics
- Need about 200k Events or more!
- Luckily: On the last day we get to choose the position

Timing of Hadronic Showers -Mean Time of Energy Deposition

Shower Timing


C. Soldner

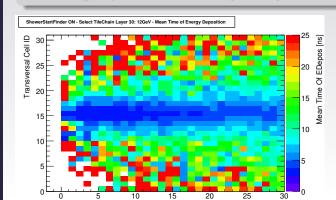
Introduction Readout

Physics Case

Summanı

- Global: No shower start finder, Assume timing strip in all layers
 - Switch on shower start finder, Timing strip in layer 30
 ⇒ Full mapping of the time structure of showers possible.
- Moving strip to front allows study of early shower region

Timing of Hadronic Showers - Mean Time of Energy Deposition


Shower Timing

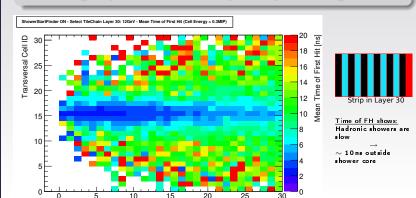
C. Soldner

Introduction Readout

Physics Case

- Global: No shower start finder, Assume timing strip in all layers
- Switch on shower start finder, Timing strip in layer 30
 ⇒ Full mapping of the time structure of showers possible
- Moving strip to front allows study of early shower region

Timing of Hadronic Showers - Mean Time of Energy Deposition


Shower Timing

C. Soldner

Introduction Readout

Physics Case Summary

- Global: No shower start finder, Assume timing strip in all layers
- Switch on shower start finder, Timing strip in layer 30
 - \Rightarrow Full mapping of the time structure of showers possible
- Moving strip to front allows study of early shower region

Timing of Hadronic Showers - Mean Time of Energy Deposition

Shower Timing

C. Soldner

Introduction Readout

Physics Case Summary

Positioning of the Timing Strip

- Global: No shower start finder, Assume timing strip in all layers
 - Switch on shower start finder, Timing strip in layer 30
 ⇒ Full mapping of the time structure of showers possible
- Moving strip to front allows study of early shower region

Use Time of FH t match Event with bunchX

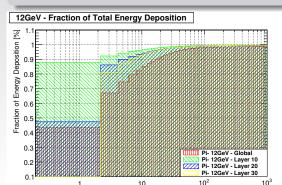
integrate shower over a certain time

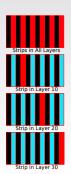
Integration Time: Time to Collect Full Energy

Shower Timing

C. Soldner

Introduction Readout


Physics Case


e

Important Result of Simulation Study

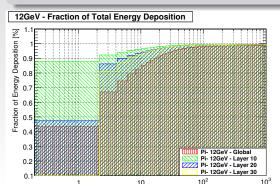
- Time resolved fraction of the total E deposition per event
- Significant fraction of event energy arrives late
 ⇒ Dependent on position in HCAL and the projectiles' energy
- So far we have only simulations → might be uncorrect as never teste Now it ist time to prove those results!!

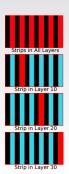
time Ins

Integration Time: Time to Collect Full Energy

Shower Timing

C. Soldner


Readout


Physics Case

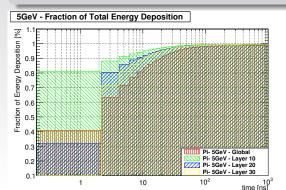
Important Result of Simulation Study

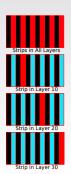
- Time resolved fraction of the total E deposition per event
- Significant fraction of event energy arrives late
 - ⇒ Dependent on position in HCAL and the projectiles' energy

time Ins

Integration Time: Time to Collect Full Energy

Shower Timing


C. Soldner


Readout

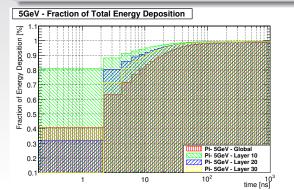
Physics Case

Important Result of Simulation Study

- Time resolved fraction of the total E deposition per event
- Significant fraction of event energy arrives late
 - ⇒ Dependent on position in HCAL and the projectiles' energy

Integration Time: Time to Collect Full Energy

Shower Timing


C. Soldner


Introduction Readout

Physics Case

Important Result of Simulation Study

- Time resolved fraction of the total E deposition per event
- Significant fraction of event energy arrives late
 - \Rightarrow Dependent on position in HCAL and the projectiles' energy
- So far we have only simulations → might be uncorrect as never tested Now it ist time to prove those results!!

Outline

Shower Timing

C. Soldner

Readout

Physics Cas

1 Motivation: CLIC, CALICE and Shower Timing

2 The Shower Timing Experiment

The Physics Case - Simulation Studies

4 Summary and Conclusion

Summary and Conclusion

Shower Timing

C. Soldner

Introduction

Physics Case

Timing at a Multi-TeV Collider

- For a Multi-TeV LC, leakage is a serious concern for the calorimeters
 A dense absorber is attractive: Tungsten!
- CLIC has extremely high bunch crossing rates (2 GHz) and considerable hadronic background from $\gamma\gamma$ interactions \Rightarrow Time stamping of signals is crucial for background rejection

Summary and Conclusion

Shower

C. Soldner

Introduction Readout

Physics Case
Summary

Timing at a Multi-TeV Collider

- For a Multi-TeV LC, leakage is a serious concern for the calorimeters
 - ⇒ A dense absorber is attractive: Tungsten!
- ullet CLIC has extremely high bunch crossing rates (2 GHz) and considerable hadronic background from $\gamma\gamma$ interactions
 - \Rightarrow Time stamping of signals is crucial for background rejection

Road to a first Shower Timing Experiment

- Simulations for Tungsten have very large uncertainties: Needs to be improved by test beams
 - ⇒ Timing is definitely a crucial open issue
- A full study requires a completely instrumented W HCAL
 - ⇒ Still a long way till we might get there!
- Wide range of measurements possible with a single strip of scintillator tiles with time-resolved readout
 - \Rightarrow Particularly powerful in combination with shower start information through Sync with CALICE HCAL

Outline

Shower Timing

C. Soldne

Appendix

5 Appendix

backup

Shower Timing

C. Soldner

Appendix

backup

Readout Options: PicoScope 6403 (already tested)

Shower

C. Soldner

Appendix

PicoScope 6403 Stats

- 4 Channel Readout @ 1.25 GSa/Sec
- 1 GSa buffer memory (shared)
- Rapid Shot: Aquire Signals with up to 1 MHz repetition rate
- External Trigger
- Size of an external HDD

PicoScope 6403 Stats

- 8-bit vertical resolution (ADC)
- clipping of very high signals can distort measurement
- 350 MHz Bandwidth

Vertical Dynamic Range

Shower Timing

C. Soldner

Appendix

Aquire Signals from \sim 20 MIP down to 1 - 2 p.e.

 \Rightarrow not achievable with 8-bit

Option 1: Two Run Modes

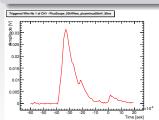
- High dynamic range mode (28 MIP): Quantify high E depositions @ $t < 10 \, \mathrm{ns}$
- Low dynamic range mode (5.5 MIP): Quantify low E depositions $@t>10\,\mathrm{ns}$
- \rightarrow Problem: Signals > 15 MIP can distort the measurement in Low dynamic range mode
- → External Pre-Clipping might be an option

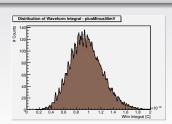
Option 2: Use Logarithmic Amplifier

- → Problem: Signal is convoluted with Amplifier Error
- \rightarrow Need 16 of them

Physics Mode using CALICE Trigger

Shower Timing


C. Soldner


Appendix

Synch. with CALICE trigger → event-based shower start finding ⇒ obtain timing information relative to the shower start

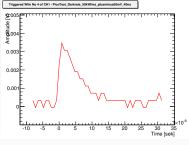
Run Mode and Requirements of Synchronisation

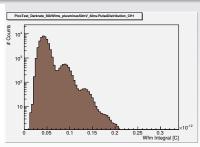
- ullet Required Time Window per Event: 2 μ s
- ullet Aquire <3000 Events @ a trigger rate < 10 kHz and transfer and save the data before the next spill arrives (\sim 60 MB per Spill)
- → Achieved in <8 seconds!!!

Time resolution (1.25 GSa/Sec) sufficient to resolve single pixel peaks in the Waveform Integral Distribution of tile penetrating electrons

Calibration Mode

Shower


C. Soldner


Appendix

SiPM Gain monitoring through SiPM darkrate

Run Mode and Requirements of Synchronisation

- Short Time Window: 40 ns
- Take calibration data between spills and/or runs
- → up to 1000 darkpulses between spills is realistic

Additional temperature sensors allow gain-temperature correlation

Readout Options: Struck VME Digitizer SIS3305 (to be tested)

Shower Timing

C. Soldner

Appendix

SIS 3305 Stats

- 8 Channel Readout @ 1.25 GSa/Sec
- 1 GSa buffer memory (shared)
- 2 GHz Bandwidth
- 10-bit vertical resolution (ADC)
- Trigger in/out

SIS 3305 Stats

- to be tested
- can the required signal caption rate be achieved?
- can be delivered till autumn?