Branching Fraction Measurements for Dummies $(\mathsf{B}^0 \rightarrow \pi^+\pi^-)$

Kolja Prothmann

Max-Planck-Institut für Physik (Werner-Heisenherg-Institut

Motivate basic procedure

- Reconstruct a
- Extract the variables

BFI I

Young Scientist Workshop Ringberg

26-30.07.2010

• What is the Branching fraction?

- Why is the branching fraction interesting?
 - Probability itself interesting
 - Can measure CKM |V_{ii}|
 - Needed on my way to measure CP violation
 - Needed for isospin analysis to remove penguin contributions

Why does the penguin distort the Φ_2 measurement?

How to measure branching fractions for $Y(4S) \rightarrow B^0 \overline{B^0}$?

$$B(B^{0} \to f) = \frac{Y(B^{0} \to f)}{N(BB)\epsilon(B^{0} \to f)}$$

- N(BB)
 Proportional to Luminosity delivered from KEKB accelerator (removed QED, Bhabha, ...)
- Efficiency
 Result of my analysis
 convoluted with detector effects

Topology similar to $B^0 \rightarrow K^+\pi^-$

- it is a strong background
- therefore we want to include it in the fit

- Belle recorded 1ab⁻¹ (nearly two times the BaBar dataset)
- About 770 mio. $B\overline{B}$ pairs
- Final goal: measure CP violation and branching fractions in one fit

Task: Find the ~ 2000 events where $B^0 \rightarrow \pi^+\pi^-$ out of 770 mio. other events

1. "Blind": do not look at the data!

Everything is done on Monte Carlo simulation before This way you cannot fall in the trap of "producing" a signal

2. "Double"

- Cross check with other analysis
 - Independent reconstruction by Jeremy Dalseno
 - Independent reconstruction by me (Kolja)

 \rightarrow Agreement within floating point accuracy!

- **Reconstruct** event •
 - Find 4 vectors of the decay products
 - Combine 4 vectors to obtain mother particles
- Variables for event discrimination:
 - $-\Delta E$
 - M_{bc}

- $\begin{array}{ll} \sim \text{reconstructed energy} & \Delta E = E_B^{CMS} E_{beam}^{CMS} \\ \sim \text{reconstructed mass} & M_{bc} = \sqrt{(E_{beam}^{CMS})^2 (p_R^{CMS})^2} \end{array}$

Likelihood from the particle identification system (PID)

- tracks:
 - veto electrons
 - veto protons
 - impact parameter cut (loose)
 - abs(ΔR) < 4 cm
 - abs(ΔZ) < 6 cm
- vertexing:
 - use only good tracks (needed to use resolution function) n_rphi_hits >= 1 && n_Z_hits >= 2

Cuts on PID Likelihood

- beam tube constraint
- define analysis window:
 - $M_{bc} > 5.2$
 - -0.15 < ΔE < 0.15

Mbc = mass beam constraint

the upper bound is given by the beam energy (event by event)

Young Scientist Workshop Ringberg 2010

2010/07/26

Likelihood to be a Kaon or Pion:

- Model Signal contributions for all possible sources
 - signal
 - generic decays ($b \rightarrow c$)
 - rare decays ($b \rightarrow uds$)
 - off-resonance (continuum qq)
 - special contributions (K⁺π⁻)

Young Scientist Workshop Ringberg 2010

2010/07/26

- Fix the signal shapes
- let the ratios between the different components float in the fit

$$Yield = \frac{\text{signal events}}{\text{total number of events}}$$

- Toy experiments to find out correlations and biases
 - Vary the expected branching ratio in the simulation
 - Get systematic uncertainty
 - Check if you obtain the simulated branching ratio

(Run your reconstruction and fitting on the real data)

Backup

Best B selection \rightarrow take first from list

reconstruction efficiency: 66.7 %

reconstruction efficiency: 73.6 %

How to measure branching fractions for

Assuming no direct CP-violation:

$$B(Y \to f) = \frac{N(B^0 \to f) + N(\overline{B^0} \to \overline{f})}{N(B^0) + N(\overline{B^0})}$$

 B^0 and \overline{B}^0 are produced in pairs:

$$B(Y \to f) = \frac{N(B^0 \to f) + N(\overline{B^0} \to \overline{f})}{2N(B^0 \overline{B^0})}$$

Assuming equal production of $B^0 \overline{B}^0$ and $B^+ B^-$

$$B(Y \to f) = \frac{N(B^0 \to f) + N(\overline{B^0} \to \overline{f})}{2 \cdot \frac{1}{2} \cdot N(B^0 \overline{B^0})} = \frac{N(B^0 \to f) + N(\overline{B^0} \to \overline{f})}{N(B \overline{B})}$$

Not all $B^0 \rightarrow f$ can be observed \rightarrow introduce Signal Yield (Number of detected events)

Young Scientist Workshop Ringberg 2010

2010/07/26

?

$$H_{l} = \sum_{i,j} \frac{|p_{i}||p_{j}|}{E_{vis}^{2}} P_{l}(\cos(\theta_{ij}))$$

 θ_{ij} : angle between hadron i and j E_{vis} : total visible energy

Normalization:

 $H_{01} = H_1 / H_0$

→ balanced Momentum: $H_1 = 0$ → 2 jet events:

 $H_{\rm I} = 1$ for l is even

Legendre polynomials:

$$\begin{split} P_0(x) &= & 1, \\ P_1(x) &= & x, \\ P_2(x) &= & \frac{1}{2}(3x^2 - 1), \\ P_3(x) &= & \frac{1}{2}(5x^3 - 3x), \\ P_4(x) &= & \frac{1}{8}(35x^4 - 30x^2 + 3), \end{split}$$

- Other idea: thrust and sphericity (minimization procedure) 80s (PEP/PETRA)
- Belle`s invention: Super-Fox-Wolfram-Moments (R. Enomoto)
- Combine merits of FW moments and thrust axis

- separate tracks of Signal B and other B

$$\begin{split} R_i^{so} &= \sum_{j,k} |p_j| |p_k| P_i(\cos \theta_{jk}) / \sum_{j,k} |p_j| |p_k|, \begin{bmatrix} j \text{ over signal B tracks} \\ k \text{ over other B tracks} \end{bmatrix} \\ R_i^{oo} &= \sum_{j,k} |p_j| |p_k| P_i(\cos \theta_{jk}) / \sum_{j,k} |p_j| |p_k|, (j,k \text{ over other B tracks}) \end{split}$$

- H. Kakuno: Kakuno-Super-Fox-Wolfram Moments (KSFW)
 - \rightarrow include charge

$$H_i = \sum_{j,k} Q_j Q_k |p_k| P_i(\cos(\theta_{ij}))$$

- \rightarrow separate treatment of charged and neutral tracks
 - g=0: only charged tracks of other B
 - g=1: only photons of other B
 - g=2: only missing momentum of other B
- \rightarrow include missing momentum vector
- E_T: scalar sum of transverse energy
- MM²: missing momentum squared

25

• 17 variables

 E_T — scalar sum of transverse energy of all particles $H_i^{so,c}$ (for i=0 to 4), using only charged tracks of other B $H_i^{so,n}$ (for i=0,2,4), using only photons of other B $H_i^{so,v}$ (for i=0,2,4), using only missing momentum of other B H_i^{so} (for i=0 to 4)

• Strong dependence on MM², separate Fisher in 7 MM² bins

$$F = \sum_{i=1}^{N} \alpha_i x_i$$

- Find the set of α_i where the distance between the signal and the background events is maximal
- Procedure (including matrix inversion):

$$\alpha_{i} = \sum_{i=1}^{N} (U_{ij}^{b} + U_{ij}^{s})^{-1} (\mu_{j}^{b} - \mu_{j}^{s})$$

 $\mu_{ij}^{b,s}$: mean for background, signal

 $U^{b,s}_{ij}$: covariant matrix background, signal

introduced by CLEO (PRD53, 1039(1996)) implemented in brutus_f at Belle

Young Scientist Workshop Ringberg 2010

2010/07/26

- Signal and Continuum are normalized
- Full off-resonance dataset used
- very smooth curves

Crosscheck plots

SVD1

SVD2

