Supersymmetry and the W-Boson mass

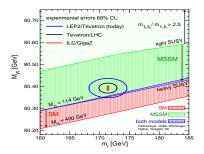
Jan Germer 2nd part: Ananda Landwehr

Max-Planck-Institut für Physik (Wernar-Heisenberg-Institut)

Young Scientist Workshop at Ringberg Castle July 2010

Aim of this talk:

Understand this plot!



Outline

- Introduction to Supersymmetry.
- On-shell renormalization of masses and couplings.
- *m_W* as dependent quantity.
- *m_W*: SM vs SUSY.

Standard Model: gauge theory

Poincaré group (spacetime symmetry) ↓ translation, boost, rotation internal symmetries (independent of momentum and spin) \downarrow $SU(3) \times SU(2)_L \times U(1)$

Why symmetries?

 \otimes

Emmy Noether

symmetries	\rightarrow	conservation laws
time translation	\rightarrow	energy conservation
rotation	\rightarrow	angular momentum conservation
$U(1)_{QED}$	\rightarrow	charge conservation

Coleman-Mandula theorem

The most general Lie algebra of symmetry operators that commute with the S-matrix [...] consists of the generators P_{μ} and $J_{\mu\nu}$ of the Poincaré group, plus internal symmetry generators.

The theorem can be overcome by considering "graded Lie algebras": \rightarrow Instead of Bosonic symmetry generators one has Fermionic generators!

Supersymmetry

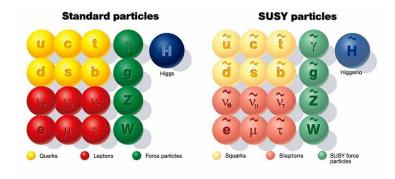
Pro

- Only (non-trivial) extension of the Poincaré group in 4D
- Relates particles of different spin
- Nice phenomenology gauge coupling unification, solution to hierarchy problem, EW precision data

Contra

- Many new particles, none of them observed.
- Supersymmetry → superpartners have same mass.
 - \Rightarrow has to be broken.

Supersymmetry: Particle spectrum



- Each SM field, gets a superpartner that differs by spin 1/2.
- Matter superfields: (spin 0, spin 1/2) doublets.
- Vector superfields: (spin 1, spin 1/2) doublets.
- Supersymmetry requires two Higgs fields \rightarrow Ananda's talk.

sfermion Lagrangian

$$\mathcal{L}_{\tilde{f}} = \left(\tilde{f}_{L}^{\dagger}, \tilde{f}_{R}^{\dagger}\right) \left(\partial_{\mu} \partial^{\mu} - \mathcal{M}_{\tilde{f}}\right) \begin{pmatrix}\tilde{f}_{L}\\\tilde{f}_{R}\end{pmatrix}$$
$$\mathcal{M}_{\tilde{f}} = \left(\begin{array}{c}m_{f}^{2} + M_{L}^{2} + m_{Z}^{2} \cos(2\beta)(T_{f}^{3} - Q_{f} \sin^{2}\theta_{W}) & m_{f}(A_{f}^{*} - \mu\kappa)\\m_{f}(A_{f} - \mu^{*}\kappa) & m_{f}^{2} + M_{\tilde{f}_{R}}^{2} + m_{Z}^{2} \cos(2\beta)Q_{f} \sin^{2}\theta_{W}\end{array}\right)$$

- Four fermions for each generation: $\tilde{u}_L, \tilde{u}_R, \tilde{d}_L, \tilde{d}_R$
- 1st generation: $m_{u,d} \approx 0$ Only three parameters in this sector: M_L , $M_{\tilde{u}_R}$, $M_{\tilde{d}_R}$

3 free mass parameters (fixed by experiment) 1 dependent mass \rightarrow prediction of the theory.

 $(\tilde{f} = \{u, d\})$

Example: Scalar QED

Consider a scalar field with U(1) interaction (electrodynamic):

$$\mathcal{L} = (D_{\mu}\Phi^{*}D^{\mu}\Phi - m_{0}^{2}) + F^{\mu\nu}F_{\mu\nu}$$

= $\partial_{\mu}\Phi^{*}\partial^{\mu}\Phi - m_{0}^{2} + F^{\mu\nu}F_{\mu\nu} + ieA^{\mu}(\partial_{\mu}\Phi^{*})\Phi - ieA^{\mu}\Phi^{*}(\partial_{\mu}\Phi) + e^{2}A_{\mu}A^{\mu}\Phi^{*}\Phi$
= $\mathcal{L}_{0,\Phi} + \mathcal{L}_{0,\gamma} + \mathcal{L}_{int}$

$$D^{\mu} = \partial^{\mu} + ieA^{\mu}$$
, $F^{\mu\nu} = \frac{1}{ie}[D^{\mu}, D^{\nu}]$

Free Φ field with mass m_0 : Free photon field: Scalar-photon interaction:

$$\begin{split} \mathcal{L}_{0,\Phi} &= \partial_{\mu} \Phi^* \partial^{\mu} \Phi - m_0^2 \\ \mathcal{L}_{0,\gamma} &= F^{\mu\nu} F_{\mu\nu} \\ \mathcal{L}_{int} &= i e A^{\mu} (\partial_{\mu} \Phi^*) \Phi - i e A^{\mu} \Phi^* (\partial_{\mu} \Phi) + e^2 A_{\mu} A^{\mu} \Phi^* \Phi \end{split}$$

How does the interaction term affect the free Lagrangian? What is the meaning of m₀?

Interaction as a perturbation

 $\bullet\,$ Find the field solutions for the free Lagrangian \mathcal{L}_0

$$\Phi(t_0, \mathbf{x}) = \int \frac{d^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \left(a_p e^{i\mathbf{p}\cdot\mathbf{x}} + a_p^{\dagger} e^{-i\mathbf{p}\cdot\mathbf{x}} \right)$$

• Switch to the interaction picture.

$$egin{aligned} \Phi_{\mathrm{I}}(t,\mathbf{x}) &= e^{iH_0(t-t_0)} \; \Phi(t_0,\mathbf{x}) \; e^{-iH_0(t-t_0)} \ \Phi(t,\mathbf{x}) &= U^\dagger(t,t_0) \; \Phi_{\mathrm{I}}(t,\mathbf{x}) \; U(t,t_0) \end{aligned}$$

- Compute time evolution $U(t, t_0)$ of the interaction picture fields $i\frac{\partial}{\partial t}U(t, t_0) = H_IU(t, t_0)$ $U(t, t_0) = 1 + (-i)\int_{t_0}^t dt_1H_I(t_1) + (-i)^2\int_{t_0}^t dt_1\int_{t_0}^{t_1} dt_2H_I(t_1)H_I(t_2) + \dots$
- The two point correlation function is now given by:

$$\langle \Omega | \mathrm{T} \{ \Phi(x) \Phi(y) \} | \Omega \rangle = \lim_{\mathrm{T} \to \infty(1-i\epsilon)} \frac{\langle 0 | \mathrm{T} \{ \Phi_{\mathrm{I}}(x) \Phi_{\mathrm{I}}(y) \ U(\mathrm{T}, -\mathrm{T}) \} | 0 \rangle}{\langle 0 | \mathrm{T} \ U(\mathrm{T}, -\mathrm{T}) | 0 \rangle}$$

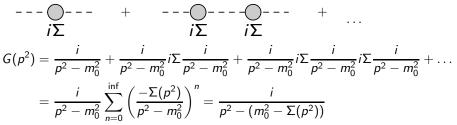
Physical mass

Feynman diagrammatic expansion of the perturbation

The propagator for the free field is given by: ------

But there is interaction with the U(1) gauge field:

To get the full (dressed) propagator, one has to resum all the contributions:



Physical mass and on-shell renormalization

The physical mass is given by the pole of the propagator:

$$0 = p^2 - (m_0^2 - \Sigma(p^2))$$

$$\Rightarrow m^2 = m_0^2 - \Sigma(m^2)$$

Case 1: m_0 is a free parameter

The value of m has to be matched to observables!

Case 2: m_0 is a dependent quantity (e.q. in the squark sector)

The value of m is predicted by the underlying theory!

e.g.:
$$m_{ ilde{d}_L} = m^{tree}_{ ilde{d}_l}(m_{ ilde{u}_L}, m_{ ilde{u}_R}, m_{ ilde{d}_R}) + \Sigma$$
(all parameters off the theory

Corrections for dependent quantities is often mild but there are exceptions. SUSY Higgs sector \rightarrow Ananda's talk.

In the standard model, all masses that are free parameters in the SM Lagrangian can be renormalized on-shell, i.e the tree level value can be set to the experimental measured value.

Consider following parameters of the SM:

- W-boson mass: *m*_W
- Z-boson mass: m_Z
- Weak mixing angle: $\sin \theta_W$

One of these parameters is a dependent quantity, since there is the tree-level relation:

$$\cos\theta_W = \frac{m_W}{m_Z}$$

 \Rightarrow only two of these parameters can be renormalized on-shell!

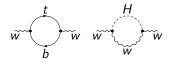
The dependent parameter is determined by the underlying theory!

$m_Z, \sin \theta_W \to m_W$

 $m_Z, m_W \rightarrow \text{direct mass measurements (LEP)}$ $\sin \theta_W \rightarrow \text{Kaon decay}$

PDG:

- $m_Z = 91.1876 \pm 0.0021 \text{ GeV}$
- $m_W = 80.403 \pm 0.029 \text{ GeV}$
- $\sin^2 \theta_W = 0.23153 \pm 0.00016$



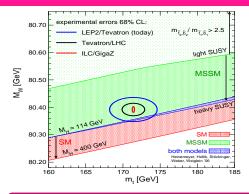
But
$$m_W^{tree} = m_z \sqrt{1 - \sin^2 \theta_W} = 79.937 \text{ GeV}$$

Not surprising, since m_W gets radiative corrections:

$$m_W^2 = m_W^{2 tree} + \Sigma(m_Z, m_W, m_t, m_H, \dots)$$

- Σ leads to a finite shift of the W-mass.
- The precise value of the shift depends on the particle spectrum of the theory.

m_W: SM vs. SUSY



SUSY spectrum

- squark, slepton: $M_L, M_R = 100...2000 \text{ GeV}$ $A^{t,b} = -2000...2000 \text{ GeV}$
- gauginos: $M_{1,2} = 100...2000 \text{ GeV}$ $m_{\tilde{g}} = 195...1500 \text{ GeV}$ $\mu = -2000...2000 \text{ GeV}$ • Histor
- Higgs: $m_A = 90...1000 \text{ GeV}$ $\tan_{\beta} = 1.2...60$

Summary

- Supersymmetry \rightarrow Unique extension of spacetime.
- Parameters in the Lagrangian have to be fixed by experiment (renormalized).
- Mass as dependent quantity: Value depends on the underlying theory.
- Prediction for m_W depends on the particle spectrum.
 - \Rightarrow SUSY slightly preferred.