LAr based anti-compton veto with Silicon Photomultipliers

Allen Caldwell, Bela Majorovits, Xiang Liu, József Janicskó, *Hossein Aghaei

Outline

- Introduction ($0\nu\beta\beta$ and the GERDA Experiment)
- SiPMs, a candidate for LAr veto
- Experimental Setup
- Results

Neutrino properties

 ν -oscillations observed $\rightarrow m_{\nu} > 0$

Still many open questions:

- m_{ν} = ?
- $\nu = \overline{\nu}$?
- normal or inverted hierarchy $(m_3 > m_2)$?
- θ_{13} =?
- CP violating phase?

The neutrinoless double beta-decay could answer the first three questions.

Neutrino accompanied Double beta-decay

- $2\nu\beta\beta$ could be observed in \sim 35 isotopes.
- $T^{2\nu\beta\beta}\sim 10^{11}$ × age of the universe (Ge^{76}).

Neutrinoless double beta-decay ($0\nu\beta\beta$)

•
$$(A,Z) \rightarrow (A,Z+2) + 2e^{-}$$

- Leptonnumber violation $\Delta L = 2$
- $T^{0
 u\beta\beta}\gtrsim 10^{15}$ imes age of the universe.

How to search for $\mathbf{0}\nu\beta\beta$

- Get a material that can $\beta\beta$ -decay.
- Measure sum of the deposited energy of both created electrons in the detector.
- Search for an energy peak at the Q-value.

The Gerda group uses germanium as target material.

Why germanium?

Sensitivity on
$$T^{0
u\beta\beta}\propto\epsilon\cdot\sqrt{\frac{M}{\sigma\cdot b}}.$$

Challenge	germanium advantage
high signal efficiency ϵ	source = detector → high efficiency
good energy resolution σ	better tahn 0.25%!
low background rate b	ultrapure material
large target mass M	existing detectors from old experiments
background discrimination	segmentation, pulse shape analysis

⊗need enrichment

 $\Theta Q_{\beta\beta} = 2039 keV$ (<2614keV)

GERmanium Detector Array (GERDA)

Is a double beta decay experiment based on enriched germanium Biggest challenge is to reduce the background

Passive BG reduction

- only usage of radio-pure materials
- shielding against external radioactivity

Active BG reduction

- active vetoing of muons with a Water-Cerenkov veto
- detector coincidence
- pulse shape analysis
- detector segmentation
- LAr-anti-compton-veto

GERDA

July 27, 2010 8

Operation in liquid argon

GERDA's main design feature: Bare germanium detectors are operated in LAr

LAr is:
1. cooling liquid
2. passive shielding
3. scintillator

Use LAr scintillation light for an active veto in a later phase!

Motivation of a LAr veto

 $0\nu\beta\beta$ decay is a local event.

Segmented detectors can identify multi-site events as background. If singly Compton scattered gamma escapes detector → no identification as background is possible.

 $0\nu\beta\beta$ decay Q-value = 2.039MeV. All γ with a higher energy are dangerous.

Detecting scintillation light in LAr from Compton scattered gammas could identify these events.

Heidelberg setup

The GERDA group from MPIK accomplished a background suppression via LAr scintillation light read out with PMTs.(2008JINST 3 P08007)

The background suppression observed by the Heidelberg Group motivated our studies.

Our goal

PMTs: 1kg, high radioactivity

→ Our goal: replace PMTs by SiPMs

Silicon Photo Multiplier characteristics:

- very small photosensors (some mg), we expect much lower radioactivity
- work at cryogenic temperatures
- do not require HV (HV leads to problems in Ar atmosphere)
- high photon detection efficiency (PDE)
- relatively cheap

⇒ excellent candidate for active veto in LAr

So what is a SiPM?

This is what a SiPM chip looks like

Array of avalanche photodiodes (APD) in Geiger mode.
APD sees one or more photons → fire

Every pixel is an APD. Number of fired pixels will tell how many photons were detected.

Single photon resolution!

Dark rate v. temperature

A nice property of SiPMs is the dark rate reduction at low temperatures.

Up to 6 orders of magnitude reduction in dark rate.

⇒ Excellent candidate for low count rate experiments!

GERDA

Problems

- 1. Argon scintillates in the VUV (128nm). SiPM peak sensitivty is at 400nm.
- → Shift the light from UV to visible range
- 2. SiPMs are very small (1mm \times 1mm).
- → Increase the effective surface.

July 27, 2010 15

Mirror foil (VM2000) (Problem 1)

Keep the light in the experiment by covering everything with VM2000 foil (95 % reflectivity).

Coat the foil with a flourescent dye (TPB). The dye shifts the scintillation light towards the visible range.

Match emitted light with wavelength you need. Problem 1 $\sqrt{}$

Optical light guide (Problem 2)

Couple SiPMs to a wave length shifting (WLS) light guide. Problem 2 $\sqrt{}$

Light gets trapped in the light guide and is guided to the SiPMs.

The light guide is made of a flourescent material. "Shifts" incident light to longer wavelengths.

Match dye emission with light guide absorption.

Experimental Setup

 6×2.5 m light guide. 12 SiPMs. \sim 15l active volume. High Purity Germanium detector. 6-fold segmented in ϕ .

Results

Results

in the ROI (2039 \pm 56)keV

- LAr-anti-compton-veto (AC) with 0.5 photon threshold SF = 5.2
- AC-veto + single-segment-cut (SSE) SF = 10.6

Full absorption peaks are not supressed.

Results

Double escape peak (DEP): 2.6MeV- $\gamma \to 1.6$ MeV- $\gamma + e^- + e^+$ 1.6MeV- γ absorbed, e^+ anihilates \to both 511keV- γ escape.

Excellent DEP suppression !!!

Summary ...

- GERDA and $0\nu\beta\beta$ could teach us a lot about neutrinos
- For high sensitivity on $0\nu\beta\beta$ we need low background \rightarrow Use LAr-AC-veto to supress background.
- SiPMs are appropriate detection devices for a LAr-AC-veto
- A supression of a factor 5 has been achieved with a small test setup.

...and outlook

- Go into pulse shapes. Potential to increase veto efficiency?
- Monte Carlo simulations

Thank you for your attention

July 27, 2010 23

Backup-slides

July 27, 2010 24

Correction curves

There is the problem of nonlinearity as more than one photon can hit the same pixel at once

→ However correction curves exist.

$$N_{fired} = N_{pix}(1 - e^{-N_{pe}/N_{pix}})(1 + p e^{-N_{pe}/N_{pix}})$$

 N_{pix} number of pixels p cross talk probability

$$N_{pe} = N_{photons} \times Q.E.$$

Photon Detection Efficiency

- APD QE peak 70% is a typical value
- Fill factor is 78.5, 61.5, 30.8 for the 100, 400, 1600 pixel MPPC's

Hamamatsu's MPPC

We tested three different SiPMs. The following specifications were given by Hamamatsu.

Number of pixels	100	400	1600
Pixel size	$100 \mu extsf{m} imes 100 \mu extsf{m}$	$50\mu\mathrm{m} imes50\mu\mathrm{m}$	$25\mu\mathrm{m} imes25\mu\mathrm{m}$
PDE at peak value	65%	50%	25%
Dark count at RT	600-1000 kHz	400-800 kHz	300 - 600 kHz
Gain at RT	2.75×10^{6}	7.5×10^{5}	2.4×10^{5}

Setup

- Bias circuit and preamplifier built on one printed circuit board at room temperature
- SiPM is submerged in LN
- coax. cable between the SiPM and the PCB

- Gas tight dewar filled with LN
- LN evaporates slowly
 - \rightarrow temperature increases continuously
- PT100 for temperature readout

Pulse shape in LN

The decay time increases at low temperatures by a factor of 6.

The quenching resistor is temperature dependent. Slow component from RC-circuit. Sharp peak from parasitic capacitances.

Gain v. temperature and bias

Does the gain drop with decreasing temperatures?

The gain is not a function of the temperature but strongly depends on $V_{
m bias}$. We have to reduce the bias at low temperatures to operate at constant gain.

Breakdown voltage v. temperature

$$V_{\mathbf{bias}} = V_{\mathbf{bd}} + V_{\mathbf{over}}$$

 V_{bd} is the minimum bias required to operate a SiPM in Geiger mode. Gain(V_{bd})=0 $\rightarrow V_{over}$ defines the gain.

 $V_{\mathbf{bd}} = V_{\mathbf{bd}}(\mathsf{T})$

ightarrow To operate at constant overvoltage we have to reduce the bias.

coupling

July 27, 2010 32