
LAr based anti-compton veto with Silicon Photomultipliers

Allen Caldwell, Bela Majorovits, Xiang Liu,
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Neutrino properties

ν-oscillations observed→ mν > 0

Still many open questions:

• mν = ?

• ν = ν ?

• normal or inverted hierarchy
(m3 > m2) ?

• θ13=?

• CP violating phase?

The neutrinoless double beta-decay could answer the first three questions.
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Neutrino accompanied Double beta-decay

• (A,Z)→ (A,Z+2) + 2e− +2νe

• 2νββ could be observed in ∼ 35
isotopes.

• T 2νββ
∼ 1011 × age of the

universe (Ge76).

July 27, 2010 3



Neutrinoless double beta-decay ( 0νββ)

• (A,Z)→ (A,Z+2) + 2e−

• Leptonnumber violation ∆L = 2

• T 0νββ & 1015 × age of the
universe.
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How to search for 0 νββ

• Get a material that can ββ-decay.

• Measure sum of the deposited energy of both created electrons in the
detector.

• Search for an energy peak at the Q-value.

The Gerda group uses germanium as target material.
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Why germanium?

Sensitivity on T 0νββ ∝ ε ·
√

M
σ·b.

Challenge germanium advantage
high signal efficiency ε source = detector→ high efficiency
good energy resolution σ better tahn 0.25% !
low background rate b ultrapure material
large target mass M existing detectors from old experiments
background discrimination segmentation, pulse shape analysis
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GERmanium Detector Array (GERDA)

Is a double beta decay experiment based on enriched germanium
Biggest challenge is to reduce the background

Passive BG reduction

• only usage of radio-pure materials

• shielding against external radioactivity

Active BG reduction

• active vetoing of muons with a Water-Cerenkov veto

• detector coincidence

• pulse shape analysis

• detector segmentation

• LAr-anti-compton-veto
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GERDA
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Operation in liquid argon

GERDA’s main design feature: Bare germanium detectors are operated in LAr

• LAr is:

 1. cooling liquid
2. passive shielding
3. scintillator

Use LAr scintillation light for an active veto in a later phase!
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Motivation of a LAr veto

0νββ decay is a local event.

Segmented detectors can identify
multi-site events as background.
If singly Compton scattered
gamma escapes detector → no
identification as background is
possible.

0νββ decay Q-value = 2.039MeV. All γ with a higher energy are dangerous.

Detecting scintillation light in LAr from Compton scattered gammas could
identify these events.
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Heidelberg setup

The GERDA group from MPIK accomplished a background suppression via
LAr scintillation light read out with PMTs.(2008JINST 3 P08007)

The background suppression observed by the Heidelberg Group motivated our
studies.
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Our goal

PMTs: 1kg, high radioactivity
→ Our goal: replace PMTs by SiPMs

Silicon Photo Multiplier characteristics:

• very small photosensors (some mg), we expect much lower radioactivity

• work at cryogenic temperatures

• do not require HV (HV leads to problems in Ar atmosphere)

• high photon detection efficiency (PDE)

• relatively cheap

=⇒ excellent candidate for active veto in LAr
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So what is a SiPM?

Array of avalanche photodiodes
(APD) in Geiger mode.
APD sees one or more photons →
fire

This is what a SiPM chip looks like

Every pixel is an APD.
Number of fired pixels will tell how
many photons were detected.

Single photon resolution!
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Photon counting

July 27, 2010 13



Dark rate v. temperature

A nice property of SiPMs is the dark rate reduction at low temperatures.
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Up to 6 orders of magnitude reduction in dark rate.

=⇒ Excellent candidate for low count rate experiments!
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Problems

1. Argon scintillates in the VUV (128nm). SiPM peak sensitivty is at 400nm.
→ Shift the light from UV to visible range

2. SiPMs are very small (1mm × 1mm).
→ Increase the effective surface.
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Mirror foil (VM2000) (Problem 1)

Keep the light in the experiment by covering everything with VM2000 foil (95 %
reflectivity).
Coat the foil with a flourescent dye (TPB). The dye shifts the scintillation light
towards the visible range.

Match emitted light with wavelength you need. Problem 1
√
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Optical light guide (Problem 2)

Couple SiPMs to a wave length shifting (WLS) light guide. Problem 2
√

Light gets trapped in the light guide
and is guided to the SiPMs.

The light guide is made of a
flourescent material. ”Shifts”
incident light to longer wavelengths.

Match dye emission with light guide absorption.
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Experimental Setup

6×2.5m light guide. 12 SiPMs. ∼15l active volume.
High Purity Germanium detector. 6-fold segmented in φ.
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Results
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Results
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Th228 spectrum

AC cut

AC + SSE cut

in the ROI (2039 ± 56)keV

• LAr-anti-compton-veto (AC) with 0.5 photon threshold SF = 5.2

• AC-veto + single-segment-cut (SSE) SF = 10.6

Full absorption peaks are not supressed.
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Results

Double escape peak (DEP): 2.6MeV-γ → 1.6MeV-γ + e− + e+

1.6MeV-γ absorbed, e+ anihilates→ both 511keV-γ escape.

Excellent DEP suppression !!!
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Summary ...

• GERDA and 0νββ could teach us a lot about neutrinos

• For high sensitivity on 0νββ we need low background → Use LAr-AC-veto
to supress background.

• SiPMs are appropriate detection devices for a LAr-AC-veto

• A supression of a factor 5 has been achieved with a small test setup.

...and outlook

• Go into pulse shapes. Potential to increase veto efficiency?

• Monte Carlo simulations
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Thank you for your attention
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Backup-slides
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Correction curves

There is the problem of nonlinearity as more than one photon can hit the same
pixel at once
→ However correction curves exist.

Nfired = Npix(1− e−Npe/Npix)(1 + p e−Npe/Npix)

Npix number of pixels
p cross talk probability
Npe = Nphotons ×Q.E.
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Photon Detection Efficiency

• APD QE peak 70% is a typical value

• Fill factor is 78.5 , 61.5, 30.8 for the 100, 400, 1600 pixel MPPC’s
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Hamamatsu’s MPPC

We tested three different SiPMs. The following specifications were given by
Hamamatsu.

Number of pixels 100 400 1600
Pixel size 100µm × 100µm 50µm × 50µm 25µm × 25µm
PDE at peak value 65% 50% 25%
Dark count at RT 600-1000 kHz 400-800 kHz 300 - 600 kHz
Gain at RT 2.75×106 7.5×105 2.4×105
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Setup

• Bias circuit and preamplifier built on
one printed circuit board at room
temperature

• SiPM is submerged in LN
• coax. cable between the SiPM and

the PCB

• Gas tight dewar filled with LN
• LN evaporates slowly
→ temperature increases continuously

• PT100 for temperature readout
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Pulse shape in LN

The decay time increases at low temperatures by a factor of 6.

RT LN

τ = 45ns τ = 440ns

The quenching resistor is temperature dependent. Slow component from RC-circuit. Sharp
peak from parasitic capacitances.
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Gain v. temperature and bias

Does the gain drop with decreasing temperatures?

The gain is not a function of the temperature but strongly depends on Vbias.
We have to reduce the bias at low temperatures to operate at constant gain.
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Breakdown voltage v. temperature

Vbias = Vbd+Vover

Vbd is the minimum bias required to operate a SiPM in Geiger mode.
Gain(Vbd)=0→ Voverdefines the gain.
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Vbd = Vbd(T)
→ To operate at constant overvoltage we have to reduce the bias.
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coupling
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