

Ludwig-Maximilians-Universität München and

Excellence Cluster Universe

Phys.Lett.B517(2001)37 Eur.Phys.J.C21(2001)199 Eur.Phys.J.C22(2001)1 Eur.Phys.J.C17(2000)19 Eur.Phys.J.C1(1998)461

http://www.jade.mppmu.mpg.de

Eur.Phys.J.C64(2009)533 Eur.Phys.J.C64(2009)351 Eur.Phys.J.C60(2009)181 Eur.Phys.J.C48(2006)3

Motivation for Reanalysis

•JADE provides unique contribution for the energy range between 14 and 44 GeV!

•analysis using FSR-Z⁰ events O(500) / energy point (final state radiation)

Outline of the Talk

- the JADE experiment at PETRA
- resurrection of data and software
- status of QCD at the end of PETRA
- latest results from QCD analysis with JADE-Data
 - measurement of $\alpha_{\rm s}$ with event shapes using NNLO resummed calculations
 - measurement of $\alpha_{\rm s}$ using the four-jet rate
 - moments of event shapes
 - power corrections and hadronization

The JADE Revival Group

MPI-PhE/2001-11 June 15, 2001

•RWTH Aachen, MPI München, LMU, DESY

S.Bethke, O.Biebel, M. Blumenstengel,

S. Kluth, P.A. Movilla Fernandez, C. Pahl,

P. Pfeifenschneider, J.E. Olsson and JS

•since 1998 more than 20 publications and conference

contributions based on/involving re-analyzed JADE data

•new JADE results have been considered by various QCD

theory groups and publications from LEP collaborations

Measurement of the longitudinal and transverse cross-section in e^+e^- annihilation at $\sqrt{s} = 35-44$ GeV

M. Blumenstengel⁽¹⁾, O. Biebel⁽¹⁾, P.A. Movilla Fernández⁽¹⁾, P. Pfeifenschneider^(1,a), S. Bethke⁽¹⁾, S. Kluth⁽¹⁾ and the JADE Collaboration⁽²⁾

The PETRA e⁺e⁻ Storage Ring

Physics at PETRA from 1979-1986

largest e⁺e⁻
 accelerator at that
 time

- •Luminosity
- ~ 24x 10³⁰ /cm² s¹ (= 26 hadronic events/hour)

(hadronic cross section ~ 0.3 nb)

Data Collected at JADE

fixed energy runs and scan periods for t-quark search

CME range (GeV)	Data taking period	Luminosity (pb ⁻¹)	√s (GeV)	MH events
14.0	07-08/1981	1.46	14.0	1734
22.0	06-07/1981	2.41	22.0	1390
33.8-36.0	02/1981-08/1982	61.7	34.6	14372
35.0	02-06/1986	92.3	35.0	20925
38.3	10-11/1981	8.28	38.3	1587
43.4-46.6	06/1984-10/1985	28.8	43.8	3940

LEP (OPAL): 330000 Zeit. fur Phys.C 59 (1993) 1-19

The JADE Experiment

concept similar to the OPAL detector

4. August 10

Resurrection of Data and Software

the JADE data:

•original data were located at

- •IBM mainframe at the DESY computer center
- •IBM tapes at DESY/University of Heidelberg
- •DESY IBM closed completely in 1997
 - •transfer of data to 'modern' data carriers
 - (IBM /EXABYTE cartridges) and computer platforms
- •'raw' data converted into FPACK format (J. Olsson)
- •multihadronic event sets are available in platform

independent ZE4V-ASCII-files ('mini-DST') (E. Elsen)

>used for the current analysis

The Recovery of JADE Data

•however, not all information were available in electronic format...

convert it to electronic version 'the hard way'...

•	RUNS	BEAM	BARREL	LUMINOSITY
	13856 13864	20.840	0.474029E+02	+- 0 779300F+01
	13865 13872	20.855	0.538850E+02	+- 0 8316665+01
	13873 13885	20.870	0 719686E+02	- 0.051404ETUI
•	13886 13895	20 885	0 (0(7(05)02	+- 0.961450E+01
1.000	13896 13006	20.000	0.694769E+02	+- 0.945461E+01
	13007 13010	20.900	0.5/9/92E+02	+- 0.864303E+01
	13907 13919	20.915	0.516098E+02	+- 0.816022E+01
	15920 15931	20.930	0.555588E+02	+- 0.847264F+01
•	13932 13941	20.945	0.465800E+02	+- 0 776333E+01
	13942 13953	20.960	0.285056F+02	+- 0 6077635+01
	13954 13963	20.975	0 609861E+02	+- 0 2205455.01
	13964 13973	20 990	0 5107665+02	0.009345E+01
•	13974 13980	21 005	0.5197446402	+- 0.821/8/E+01
	13981 13080	21 020	0.442404E+02	+- 0.758717E+01
	13000 17009	21.020	0.5081/6E+02	+- 0.813734E+01
	13990 13998	21.035	0.678519E+02	+- 0.940937E+01
	13999 14009	21.050	0.770938E+02	+- 0.100368F+02
-	14011 14021	21.065	0.667339E+02	+- 0 936661E+01
	14022 14031	21.080	0.497930F+02	+- 0 8077605+01
	14032 14043	21.095	0 526870E+02	+- 0 2202025:01
	14044 14054	21,110	0 600326E+02	- 0.029092E+UI
•	14055 14065	21 125	0 6673995102	0.010010E+01

JADE luminosity files

 Monte Carlo events only available for √s= 35 and 44 GeV (also ZE4V – ASCII format)

for more MC events the revival of the JADE software necessary

The Revival of the JADE Software

to generate new Monte Carlo Events requires:

- a) detector simulation
- b) event analysis software (reconstruction)
- c) (JADE event display)
- d) multihadronic filtering and packing

Source code:

- •code fragments from 1974 (!)
- •mixture of different FORTRAN standards/extensions
- •IBM specific extensions
- •IBM/370 assembler code

The Revival of the JADE Software

- •historic research work using old JADE notes/PhDs/
- publications necessary
- •move to FORTRAN77, CERNLIB and HIGZ
- platform dependence extremely difficult

IBM: big-endian (most significant byte stored in lowest address) PCs: little-endian (vice versa)

JADE software accesses BOS-banks not in units of of words(4 Bytes)

•complete installation successful on IBM RS/6000 AIX machine (with XLF compiler)

The Revival of the JADE Software

Event Display

reconstructed points in the Jetchamber, TOF and Calorimeter

Event Display

Data versus Monte Carlo

Status of the QCD before LEP

- •very large dependence on Monte Carlo model
- dependence on matrix element calculation
- no renormalization scale variation

What's happened since PETRA

LEP learned a lot from the QCD experience at PETRA, now PETRA profits from LEP

improved theoretical predictions

(NNLO predictions, resummed calculations for event shapes,...)

development of new event-shape variables

new jet finders (Durham, Cambridge)improved Monte-Carlo models

Improved Monte-Cano mod
power corrections

Hadronic Final States

cross section for $e^+e^- \rightarrow$ hadrons

Event Shapes

Event Shapes

Thrust (1-T)
Heavy Jet Mass (M_H²)
Jet Broadening (B_T,B_W)^{*}
C Parameter^{*}
Differential 2-jet rate y₂₃^{*}
(Durham scheme)

•infrared and collinear safe quantities •resummable in all orders $\alpha_s \ln (1/F)$

F=1-T,C,M_H²,...

*) Event Shape variables only used after shutdown of PETRA

Event Shape: Thrust

Event Shapes

•Heavy Jet Mass (M_H)²

event divided in two hemispheres using thrust axis

 M_{H} = max (inv. mass of hemisphere) $I_{I=1,2}$

•Jet Broadening (B_T, B_W)

momentum of hadrons in one Hemisphere perpendicular to thrust axis maximum (B_W) and total (B_T)

• C Parameter

average angle between hadron pairs weighted with momentum ≤3/4 ≤1 (eigenvalues of linearised momentum tensor) 0

•Differential 2-jet rate y₂₃ (Durham scheme)

y_{cut} value, when an event switches from 2-Jet type to 3-Jet type

Jetfinder: JADE \rightarrow Durham!

≤1/2

≤1/3

B_T: 0 ≤1/(2√3) ≤1/(2√2) B_W: 0 ≤1/(2√3) ≤1/(2√3)

0

QCD Predictions

•O(α_s^2) calculations, (3 jet region):

$$\frac{dR}{dF} = \frac{1}{\sigma_0} \frac{d\sigma}{dF} = \frac{dA(F)\alpha_s(\mu)}{dF} + \frac{dB(F)}{dF} \left(\frac{\alpha_s(\mu)}{2\pi}\right)^2 + O\left(\left(\frac{\alpha_s(\mu)}{2\pi}\right)^3\right)$$
Gehrmann–De Ridder et al.:
Weinzleri
$$\frac{dR}{dF} = \frac{1}{\sigma_0} \frac{dR}{dF} = \frac{dA(F)\alpha_s(\mu)}{dF} + \frac{dB(F)}{2\pi} \left(\frac{\alpha_s(\mu)}{2\pi}\right)^2 + \frac{dC(F)}{dF} \left(\frac{\alpha_s(\mu)}{2\pi}\right)^3 + O\left(\left(\frac{\alpha_s(\mu)}{2\pi}\right)^4\right)$$

⁽used for PETRA QCD analysis in the 80's)

QCD Predictions

0.35 0.4

QCD Predictions

•Problem:

no good description for $F \rightarrow 0$ (divergent)

take large logarithmic L=In(1/F) contribution into account (NLLA)

$$R(F) = \int_0^F dF' \frac{1}{\sigma_0} \frac{d\sigma(F')}{dF'} = C(\alpha_s) e^{G(\alpha_s,L)} + D(\alpha_s,L)$$

$$R(F) = (1 + C_1 \alpha_s + C_2 \alpha_s^2) e^{Lg_1(\alpha_s L) + g_2(\alpha_s L)}$$

with $L = \ln(1/L)$

vith
$$L = \ln(1/F)$$

•match both calculations $O(\alpha_s^3)$ + NLLA:

- •dependent from renormalization scale μ •fit perturbative predictions with scale factor x_µ=µ/√s=1
- α_s as the only free parameter

QCD Prediction vs MC Parton Shower

- envelope corresponds to hadronization uncertainty + scale error $(x_u=.5...2)$
- bias on α_S
 covered by
 systematic
 uncertainty

Correction Procedure

- •measured distribution needs to be corrected for imperfect
- detector ('detector correction')
 - •subtract bb-background on detector level >see following slide
 - •resolution, acceptance and secondary processes
 - •photon initial state radiation (ISR)
- •QCD calculations describe parton level of event shape distribution
 - correction for hadronization effects ('hadronization

correction')

Monte Carlo Models

Detector Level Distributions

Monte Carlo + JADE simulation reproduces multihadronic events

Monte Carlo models:

•PYTHIA/JETSET

•LLA parton shower + string

•ARIADNE

•color dipole + string

•HERWIG

•MLLA parton shower + cluster

•COJETS

•LLA parton shower + independent

Correction for bb-Events

~about 9% bb-events

•bb events fake events with gluon radiation (electro weak decay)

➤subtraction at detector level

Correction Method

Data Correction

Fit to Distribution

 $\alpha_{\mathbf{S}}$

- χ^2 /d.o.f. between **JADE NNL** and 2.3 (use statistical error only for fit) 1-T, M_H, B_T, B_W,
- fit range determined by α_{s} lny/y < 1 and all orders of NNLO calculation contribute $\alpha_{s}(m_{z})=0.1210\pm0.0061$

 \sqrt{s}

 x_{μ} dependence significantly reduced w.r.t O(α_{S}^{2}) calculations

33

α_s Result (NNLO+NLLA)

√s (GeV)	a _s (√s)	Stat.	Hadr.	Higher order	$\widehat{\mathbf{E}}_{0.14} \boxed{\mathbf{JADE}}$
14.0	0.1605	0.0044	0.0148	0.0073	35 GeV 0.13
22.0	0.1456	0.0036	0.0077	0.0048	0.12
34.6('82)	0.1367	0.0011	0.0046	0.0040	0.11
35.0('86)	0.1412	0.0009	0.0049	0.0047	4 - ····· NNLO+NLLA - NNLO NLO+NLLA
38.3	0.1388	0.0030	0.0042	0.0048	3 NLO
43.8	0.1296	0.0019	0.0033	0.0034	2
			-		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 $\alpha_{s}(M_{z})^{JADE}=0.1172\pm0.0006\pm0.0050$ $\alpha_{s}(M_{z})^{Lep1}=0.1224\pm0.0009\pm0.0038$

ALEPH hep-ph/0906.3436

Xμ

Combined α_s Result

0.1210±0.0007(stat.)±0.0021 (exp.)±0.0044(had.)±0.0036 (theo.)

 $\alpha_{s}(M_{z})^{NNLO+NLLA}=$ 0.1172±0.0006(stat.)±0.0020 (exp.)±0.0035(had.)±0.0030 (theo.)

0.14

0.12

0.1

25

50

75

100

125

150

175

200

 \sqrt{s} [GeV]

 $\alpha_{\rm s}({\rm m_z})=0.1189\pm0.0041$

Measurement using Jet Rates

• NLO+NLLA calculations available for 3- and 4-Jet Rate:

 α_{S} from 3-jet rate:

 $\alpha_s(M_{Z^0}) = 0.1206 \pm 0.0031(\text{stat.} + \exp) \pm 0.0038(\text{theo})$

Measurement using 4-Jet Rate

37

JADE Analysis at the new millenium

4. August 10

'Running' of α_{S}

	running $\alpha_{\rm S}$ χ^2 /d.o.f. χ^2 probability	$\begin{array}{l} \text{constant } \alpha_{\text{S}} \\ \chi^{\text{2}/\text{d.o.f.}} \\ \chi^{\text{2}} \text{ probability} \end{array}$
JADE	3.9/5	7.0/5
14-44 GeV	57%	22%
OPAL	6.4/12	12.4/12
91-209 GeV	90%	42%
JADE+OPAL	12.0/18	149.5/18
14-209 GeV	85%	0.0%

combination of α_{s} values: –JADE data alone return no significant proof for running of α_{s} –LEP alone consistent with being constant

▶ combination of LEP and JADE date excludes constant value of α_{s}

Moments of Event Shapes

- fit range for α_{S} measurments using event shape distribution restricted
- fit to moments probe complete available phase space

Moments of Event Shapes

direct evidence for change of of α with \sqrt{s}

- use perturbative NLO predictions
- correction for hadronization effects with Monte Carlo

Power Corrections

remember: QCD calculations predict only distribution on parton level

 large uncertainties due to hadronization modeled with Monte Carlo with quite a few free parameters

perturbative treatment of hadronization leads to divergences
separate effects at large Scale (PT) and small scale (PC)

Power Corrections

Dokshitzer-Marchesini-Webber (DMW) structure of power corrections (1996)

Moments of Event Shapes

- OPAL and JADE data:
- use NLO and hadronization correction using power corrections $\alpha_s(M_{Z^0}) = 0.1183 \pm 0.0007(\text{stat.}) \pm 0.0016(\text{exp.}) \pm 0.0011(\text{had.}) \pm 0.0052(\text{theo.})$
- use NNLO for perturbative predictions: $\alpha_s(M_{Z^0}) = 0.1153 \pm 0.0017(\exp.) \pm 0.0023(\text{theo.})$

Moments of Event Shapes

- compare hadronization correction from MC and power correction
- both approaches describe data well
- MC hadronization correction considerably smaller
- $\alpha_0(2 \text{ GeV})=0.5132\pm0.0115(\text{fit})\pm0.0381(\text{theo})$

Power Correction for Distribution

- use NNLO perturbative calculation
- expect shift of event shape distribution due to hadronization effects
- power corrections for event shape distributions together with NNLO perturbative predictions only for Thrust available
- fit to LEP, Petra and Amy

 $\alpha_s(M_{Z^0}) = 0.1164 \pm 0.0028$ $\alpha_0(2GeV) = 0.59 \pm 0.03$

Single Dressed Gluon Approximation

Gardi and Grunberg hep-ph/99084582

- reorder perturbative series (skeleton expansion)
 - first contribution single dressed gluon (QED: single photon dressed with all possible vacuum polarization insertions)
 - existence only proven for abelian field theory

Conclusion (I)

Conclusion (II)

- data and software from the JADE experiment were successfully resurrected
- data was used to perform state-of-the-art QCD studies at $\sqrt{s} < M_{Z^0}$
- results provide stringent tests of perturbative and non-perturbative aspects of QCD
- keep the data and software alive, it's worth it

A Comment on archiving...

Carchived data of finished experiments can provide valuable sources for future analysis

- apply new theoretical calculations
- use new Monte Carlos methods to analyze data
- Corresponding documentation (!)
- Implatform independent software simplifies running the code in the future
 - enforce the compilation and running of the software on several different machines

Nobel prize 2004

 Advanced Information on the Nobel Prize in Physics 2004:

