$\alpha_{\rm s}$ Determination via the Differential 2-Jet-Rate at LHC

Markus Lichtnecker

LMU München, LS Schaile

Young Scientist Workshop, 07/27/2010

Deutsche Forschungsgemeinschaft DFG

Outline

- Jet-Algorithms
- α_s and NLOJet++
- Influence of the Underlying Event
- Summary

Jets

- Jets very important for many physics analysis: QCD, Top-Quark, Higgs, SUSY, etc.
- large statistics \rightarrow first data analysis e.g. α_s determination
- several different Jet-Algorithms available (different physical and theoretical motivations)
- \bullet two big groups: Cone- and $k_{\rm T}\text{-}\mathsf{Jets}$

 $\begin{array}{c} {\rm Jets} \\ \alpha_{\rm S} \mbox{ and } {\rm NLOJet}{++} \\ {\rm Influence \ of \ the \ Underlying \ Event} \\ {\rm Summary} \end{array}$

Cone-Jet Algorithms

- geometrical Jet-Definition
 - \rightarrow objetcs inside cone with $R=\sqrt{\Delta\eta^2+\Delta\Phi^2}$
- not infrared- and collinearsafe in all variants

Exclusive k_T -Algorithm, ΔR -scheme

- *d_{min}*: smallest value among
 d_{kB} and *d_{kl}*
- d_{Cut} : cut-off parameter until jets are merged
- $d_{\min} > d_{Cut}$: all remaining objects are classified as jets
- if *d_{kl}* is smallest, k and l are combined
- if *d_{kB}* is smallest, k is included in beam jet
- jet-size is dynamic, no overlapping jets

Exclusive k_T -Algorithm, ΔR -scheme

- infrared- and collinearsafe
- clusters objects close in momentum space
- distance between objects $d_{kl} = min(p_{Tk}^2, p_{Tl}^2) * R^2$ (with $R = \sqrt{\Delta \eta^2 + \Delta \Phi^2}$)
 - ightarrow objects clustered to Jets until $d_{kl} \geq d_{cut}$
 - \rightarrow number of Jets in final state depends on d_{cut}
- here (other way round): interested in d_{cut} for specific Jetmultiplicity
 - $ightarrow {
 m d}_{23}$: d_{cut}-value where Jetmultiplicity flips from 3 to 2

Strong coupling constant α_s

•
$$\alpha_s = \frac{g_s^2}{4\pi}$$
 with color charge g_s

 processes with gluons needed to evaluate α_s (strength of gluon-coupling on colored particles = α_s)

 α_s and Jets in hadron collisions

 no emission of additional parton

- $\sigma \sim \alpha_s^3$
- emission of additional parton
- in theory: infrared and collinear divergences

 → need infrared- and collinearsafe observables, e.g. k_T-Jets

NLOJet++

- NLOJet++ (version 4.1.3)
- by Zoltan Nagy
- used to generate inclusive 3 parton production @ NLO (Next-to-leading-order)
- $\bullet\,$ e.g. Jet- $p_T\text{-distributions}$ for born, nlo and full

3-Jet-Rate

٩

number of events with 3 Jets in final state number of events

$$R_3 = \frac{\sigma_{3Jets}}{\sigma_{2Jets} + \sigma_{3Jets}}$$

- $\bullet\,$ in LO proportional to α_{s}
- for more exact determination: NLO calculations $R_3(d_{23}) = A(d_{23}) * \alpha_s + B(d_{23}) * \alpha_s^2$
- entries in R_3 -distribution are correlated \rightarrow slope of R_3 -distribution is uncorrelated

$$R_2 = 1 - R_3(-R_4)$$

 \rightarrow in experiment: measure regions where R_4 is negligible

Differential 2-Jet-Rate

$$D_{23} = \frac{\Delta R_2}{\Delta d_{23}} = -\frac{\Delta R_3}{\Delta d_{23}} =$$
$$\frac{\Delta A(d_{23})}{\Delta d_{23}} * \alpha_s + \frac{\Delta B(d_{23})}{\Delta d_{23}} * \alpha_s^2$$
$$= \frac{1}{N} * \frac{\Delta N}{\Delta d_{23}}$$

D_{23} distribution of born, $\ensuremath{\text{nlo}}$ and full

Q^2 dependancy of $lpha_\mathrm{s}$

born and nlo distributions differ in shape!

Principle of $\alpha_{\rm s}$ measurement

۲

$$egin{aligned} D_{23}&=rac{1}{N}*rac{\Delta N(Q^2)}{\Delta d_{23}}=\ &rac{\Delta A(d_{23},Q^2)}{\Delta d_{23}}*lpha_s(Q^2)+rac{\Delta B(d_{23},Q^2)}{\Delta d_{23}}*lpha_s^2(Q^2) \end{aligned}$$

• get
$$\frac{1}{N} * \frac{\Delta N(Q^2)}{\Delta d_{23}}$$
 from measured data

• obtain
$$\frac{\Delta A(d_{23},Q^2)}{\Delta d_{23}}$$
 (=born) and $\frac{\Delta B(d_{23},Q^2)}{\Delta d_{23}}$ (=nlo) from NLOJET++

 \rightarrow evaluate $\alpha_{\rm s}$ from fits on $\mathit{D}_{\rm 23}\text{-distribution}$

Underlying Event

- particles from hard 2 Parton \rightarrow 2 Parton collision
- Initial and Final State Radiation
- additional, soft contributions the Underlying Event (UE)
 - Beam remnants
 - Multiple Interactions
- $\bullet\,$ perturbation theory can't be applied at low $p_{\rm T}$

 $$\rm Jets$$ α_s and $\rm NLOJet++$ Influence of the Underlying Event $$ Summary $$$

p_{T} -distribution (PYTHIA, $p_{Tmin} = 20$ GeV)

 $k_{\rm T}$ -jets

jet constituents

 $\begin{array}{c} {\rm Jets} \\ \alpha_s \mbox{ and } {\rm NLOJet}{\rm +}{\rm +} \\ \mbox{Influence of the Underlying Event} \\ {\rm Summary} \end{array}$

Subtraction of UE: low- p_T -method

- (Hard+Tune A) Hard approximates the fraction of UE in a hard process
- How to describe the UE in a real event, when no possibility to get solely particles from hard scattering (without contribution of UE)?
- \bullet idea: UE \approx soft collision \longrightarrow low- $p_{\rm T}$ jets
- \bullet select low- $\mathrm{p_{T}}$ jets in hard collision (3rd jet)

 $$\Delta_s$ and NLOJet++ Influence of the Underlying Event Summary$

comparison: "low- $\rm p_T$ jets" to "UE \approx (Hard+Tune A) – Hard" scalefactor needed: low- $\rm p_T$ \times 1.15

 $\substack{\alpha_s \text{ and NLOJet}++\\ \text{Influence of the Underlying Event}\\ \text{Summary}}$

How to correct $k_{\rm T}$ jets for UE ?

- \bullet weight each particle (${\rm p_T} <$ 20 GeV) in jet by probability not to come from UE
- weighing-factors from [(Hard+Tune A)–(1.15×low-p_T)]/(Hard+Tune A)

 $\substack{ \alpha_{\rm S} \text{ and } {\rm NLOJet}++ \\ \text{Influence of the Underlying Event} \\ {\rm Summary} \end{cases}$

How to correct d_{23} for UE ?

- weight each particle ($\rm p_T < 20~{\it GeV})$ in jet by probability not to come from UE
- $\bullet\,$ sum up corrected particles to new jets with corrected p_T
- calculate new d_{23} with new jet- $p_{\rm T}$ and original R: min of:

•
$$d_{kl} = min(p_{Tk}^2, p_{Tl}^2) * R^2$$
 and

•
$$d_{kB} = p_{Tk}^2$$

 $$\rm Jets$$ α_s and $\rm NLOJet++$ $\rm Influence of the Underlying Event $$ Summary $$$

d_{23} -distribution

```
hard, hard+UE,hard+UE(cor,N=3),
hard+UE(cor,d<sub>cut</sub> = 400 GeV^2)
```


 $$\rm Jets$ α_s and $\rm NLOJet++$ Influence of the Underlying Event $$\rm Summary$ $$

$d_{23}(hard)/d_{23}(hard + UE)$

 $\begin{array}{c} {\rm Jets} \\ \alpha_{\rm S} \mbox{ and } {\rm NLOJet}{++} \\ \mbox{Influence of the Underlying Event} \\ {\rm Summary} \end{array}$

...same for $p_{Tmin} = 200 \text{ GeV}$

hard scattering of $\mathrm{p_{Tmin}}=200~\text{GeV}$

- \rightarrow small influence of the UE!
- \rightarrow influence of the UE decreases with higher p_{Tmin}

Summary

- NLOJet++
 - useful for NLO calculations
 - born and nlo distributions differ in shape
 - D_{23} (differential 2-Jet-Rate) can be used to determine $\alpha_{\rm s}$
- Influence of the Underlying Event
 - $\bullet\,$ correction method for small $p_{\rm Tmin}$
 - $\bullet~$ UE seems to have small influence at high $\rm p_{Tmin}$