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Jets

Jets very important for many
physics analysis: QCD, Top-Quark,
Higgs, SUSY, etc.

large statistics
→ first data analysis
e.g. αs determination

several different Jet-Algorithms
available (different physical and
theoretical motivations)

two big groups: Cone- and kT-Jets
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Cone-Jet Algorithms

geometrical Jet-Definition
→ objetcs inside cone with R =

√

∆η2 + ∆Φ2

not infrared- and collinearsafe in all variants
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Exclusive kT-Algorithm, ∆R-scheme

move to beam jet

STOPdcut <min( dkl kB),d

dkl<dkB

dkl  = min(p Tk,pTl)
2 *∆Rkl       dkB=pTk

2 2

Yes

No

Yes

No

Merge k,l

dmin: smallest value among
dkB and dkl

dCut: cut-off parameter until
jets are merged

dmin > dCut: all remaining
objects are classified as jets

if dkl is smallest, k and l are
combined

if dkB is smallest, k is
included in beam jet

jet-size is dynamic, no
overlapping jets
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Exclusive kT-Algorithm, ∆R-scheme

infrared- and collinearsafe

clusters objects close in momentum space

distance between objects dkl = min(p2
Tk , p2

Tl) ∗ R2

(with R =
√

∆η2 + ∆Φ2)
→ objects clustered to Jets until dkl ≥ dcut

→ number of Jets in final state depends on dcut

here (other way round): interested in dcut for specific
Jetmultiplicity
→ d23: dcut -value where Jetmultiplicity flips from 3 to 2
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Strong coupling constant αs

Confinement

Asymptotic
Freedom

Q2mZ
2

sα

0.118

αs = g2
s

4π
with color charge gs

processes with gluons needed to evaluate αs

(strength of gluon-coupling on colored particles = αs)
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αs and Jets in hadron collisions

σ ∼ α2
s

no emission of additional
parton

σ ∼ α3
s

emission of additional parton

in theory: infrared and
collinear divergences
→ need infrared- and
collinearsafe observables,
e.g. kT-Jets
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NLOJet++

NLOJet++ (version 4.1.3)
by Zoltan Nagy
used to generate inclusive 3 parton production @ NLO
(Next-to-leading-order)
e.g. Jet-pT-distributions for born, nlo and full
(pT > 20 GeV , pT ,SUM > 80 GeV )
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3-Jet-Rate

number of events with 3 Jets in final state

number of events

R3 =
σ3Jets

σ2Jets + σ3Jets

in LO proportional to αs

for more exact determination: NLO calculations
R3(d23) = A(d23) ∗ αs + B(d23) ∗ α2

s

entries in R3-distribution are correlated
→ slope of R3-distribution is uncorrelated
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R2 = 1 − R3(−R4)
→ in experiment: measure regions where R4 is negligible

Differential 2-Jet-Rate

D23 =
∆R2

∆d23
= −

∆R3

∆d23
=

∆A(d23)

∆d23
∗ αs +

∆B(d23)

∆d23
∗ α

2
s

=
1

N
∗

∆N

∆d23
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D23

D23 distribution of born, nlo and full
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Q2 dependancy of αs

αs depends on Q2

Q2 ∼= p2
T,leading Jet

D23 distribution vs. pT(leading Jet)
born nlo
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Principle of αs measurement

D23 =
1

N
∗

∆N(Q2)

∆d23
=

∆A(d23,Q
2)

∆d23
∗ αs(Q

2) +
∆B(d23,Q

2)

∆d23
∗ α

2
s (Q

2)

get 1
N
∗

∆N(Q2)
∆d23

from measured data

obtain ∆A(d23,Q
2)

∆d23
(=born) and ∆B(d23,Q

2)
∆d23

(=nlo) from
NLOJET++

→ evaluate αs from fits on D23-distribution
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Underlying Event

particles from hard 2 Parton → 2 Parton collision
Initial and Final State Radiation
additional, soft contributions - the Underlying Event (UE)

Beam remnants
Multiple Interactions

perturbation theory can’t be applied at low pT
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pT-distribution (PYTHIA, pTmin = 20 GeV)

kT-jets
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Subtraction of UE: low-pT -method

(Hard+Tune A) – Hard approximates the fraction of UE in a
hard process

How to describe the UE in a real event, when no possibility to
get solely particles from hard scattering (without
contribution of UE)?

idea: UE ≈ soft collision −→ low-pT jets

select low-pT jets in hard collision (3rd jet)
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comparison: “low-pT jets” to “UE ≈ (Hard+Tune A) – Hard”
scalefactor needed: low-pT × 1.15

UE can be approximated by low-pT-jet!
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How to correct kT jets for UE ?

weight each particle (pT < 20 GeV ) in jet by probability not
to come from UE
weighing-factors from
[(Hard+Tune A)–(1.15×low-pT)]/(Hard+Tune A)

pTconst
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How to correct d23 for UE ?

weight each particle (pT < 20 GeV ) in jet by probability not
to come from UE

sum up corrected particles to new jets with corrected pT

calculate new d23 with new jet-pT and original R:
min of:

dkl = min(p2
Tk , p2

Tl) ∗ R2 and
dkB = p2

Tk
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d23-distribution

hard, hard+UE,hard+UE(cor,N=3),
hard+UE(cor,dcut = 400 GeV 2)

hard scattering of pTmin = 20 GeV
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d23(hard)/d23(hard + UE)

d23(hard)
d23(hard+UE)
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hard scattering of pTmin = 20 GeV
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...same for pTmin = 200 GeV

d23(hard)
d23(hard+UE)

d23(hard)
d23(hard+UE(cor))
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hard scattering of pTmin = 200 GeV
→ small influence of the UE!
→ influence of the UE decreases with higher pTmin
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Summary

NLOJet++

useful for NLO calculations
born and nlo distributions differ in shape
D23 (differential 2-Jet-Rate) can be used to determine αs

Influence of the Underlying Event

correction method for small pTmin

UE seems to have small influence at high pTmin
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