How to recognize different types of trees from quite a long way away

Daniel Härtl

Max-Planck-Institut für Physik, München

IMPRS Young Scientist Workshop at Ringberg Castle July 28, 2010

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

No. 1 The Larch

The Pink Lecture Series: Strings at the TeV Scale

Daniel Härtl

Max-Planck-Institut für Physik, München

IMPRS Young Scientist Workshop at Ringberg Castle July 28, 2010

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

- 2 String Scattering
- String Effects

String Theory in a Nutshell

- Strings propagate in 10-dimensional spacetime.
 - \Rightarrow Compactification: $\mathcal{M}_{10} = \mathbb{R}^{(3,1)} \times \mathcal{Y}_6$.

Daniel Härtl (MPP)

Energy Scales in Quantum Gravity

• Four-dimensional gravity becomes strong at the Planck scale

$$M_{\mathrm{Pl,4}} = \sqrt{rac{\hbar c}{G}} \sim 10^{19} \,\,\mathrm{GeV}$$
 .

• TeV scale quantum gravity is possible in theories with *n* large extra-dimensions of size *R* [ADD '98]:

$$(M_{{\rm PI},4})^2 \sim (M_{{\rm PI},4+n})^{2+n} \; R^n$$

- For string compactifications to D = 4 the string scale M_S satisfies $(M_{\rm Pl,4})^2 \sim g_S^{-2} (M_S)^8 V_6$.
- Strings could be discovered at LHC if $g_S < 1$, $M_S \sim O(\text{TeV})$.
- Gravitational constraints from phenomenology, astrophysics and cosmology demand $M_S > 1$ TeV [ADD '98].

Daniel Härtl (MPP)

Strings at the TeV Scale

Open String Interactions

Strings can interact in two ways, i.e. by joining and splitting.

Open string diagrams then look like

String diagrams are 2d surfaces in 10d space-time.

No. 12 b

The V_i 's are vertex operators creating and annihilating string states.

Riemann Mapping Theorem

The V_i 's are vertex operators creating and annihilating string states.

Riemann Mapping Theorem

The V_i 's are vertex operators creating and annihilating string states.

Riemann Mapping Theorem

The V_i 's are vertex operators creating and annihilating string states.

Riemann Mapping Theorem

The V_i 's are vertex operators creating and annihilating string states.

Riemann Mapping Theorem

The V_i 's are vertex operators creating and annihilating string states.

Riemann Mapping Theorem

The V_i 's are vertex operators creating and annihilating string states.

Riemann Mapping Theorem

The V_i 's are vertex operators creating and annihilating string states.

Riemann Mapping Theorem

The Full Amplitude

One has to sum over all cyclic non-equivalent configurations

and integrate over the vertex operator positions z_i

$$\mathcal{A}(1,\ldots,N) \propto \int \prod_{i=1}^N \mathrm{d} z_i \, \sum_{\sigma \in S_{N-1}} \langle V_1(z_1) \, V_{\sigma(2)}(z_{\sigma(2)}) \ldots V_{\sigma(N)}(z_{\sigma(N)})
angle \,.$$

Challenges:

- Integration,
- Interacting CFT of ψ & S fields in $\langle V_1 \dots V_n \rangle \rightarrow$ [DH, Schlotterer, Stieberger '09].

Strings & Branes & Gauge Theories

The SM from intersecting D6-branes:

Stringy QCD results

All tree-level amplitudes pp
ightarrow pp are of the form [Lüst, Stieberger, Taylor '08]

$$\mathcal{A}(k_1, k_2, k_3, k_4, M_S) \sim \frac{s u}{t M_S^2} B(-s/M_S^2, -u/M_S^2),$$

where s, u, t are the Mandelstam variables and B(x, y) is the Euler beta function.

• *M_S*-expansion:

$$\mathcal{A} \sim rac{t}{s} - rac{\pi^2}{6} t \, u \, M_S^{-4} + \mathcal{O}(M_S^{-6}) \, .$$

• pole-expansion:

$$B = -\sum_{n=0}^{\infty} \frac{M_{S}^{2-2n}}{n!} \frac{1}{s - nM_{S}^{2}} \left[\prod_{J=1}^{n} (u + M_{S}^{2}J) \right]$$

Stringy Phenomenology

• Production of Regge-excitations [Lüst, Stieberger, Taylor et al. '08]

- model-dependent corrections from $qq \rightarrow qq$ [Lüst, Stieberger, Taylor et al. 09],
- photons at tree-level [Anchordoqui, Taylor et al. '08]: $gg \rightarrow g\gamma$, $gg \rightarrow \gamma\gamma$.

Daniel Härtl (MPP)

- You should now be able to recognize the larch from a long way away.
- You should watch Monty Python's Flying Circus.

- TeV scale quantum gravity can be realized in theories with large extra dimensions.
- String theory is the natural playground for such theories.
- LHC might discover stringy effects.

Thanks for your attention.

Vertex Operators

The vertex operators for gluons and fermions are

$$\begin{split} V_{\mathcal{A}^{\mathfrak{a}}}(z,\xi,k) &= g_{\mathcal{A}} \lambda^{\mathfrak{a}} e^{-\phi(z)} \quad \xi^{\mu} \psi_{\mu}(z) e^{i \, k_{\nu} X^{\nu}(z)} \,, \\ V_{\psi_{\beta}^{\alpha}}(z,u,k) &= g_{\psi} \lambda_{\beta}^{\alpha} e^{-\phi(z)/2} u^{\lambda} S_{\lambda}(z) e^{i \, k_{\nu} X^{\nu}(z)} \Xi(z) \,, \end{split}$$

where $\frac{\psi^{\mu}}{S_{\alpha}}$ is an external (4d) $\frac{\text{vector}}{\text{spin field}}$, $e^{ikX^{\nu}}$ is the momentum part, and Ξ is an internal (6d) field.

The correlation function of vertex operators factorizes

$$\langle V_1(z_1) \dots V_N(z_N) \rangle \propto \underbrace{\langle \mathcal{O}_X \rangle \cdot \langle \mathcal{O}_\Xi \rangle}_{\text{well-known}} \cdot \langle \mathcal{O}_{\psi,S} \rangle.$$

A formula for arbitrary ψ -S correlators at tree-level can be found in [DH, Schlotterer, Stieberger '09].