Statistical analysis in the search for dark photons from Higgs boson decays via ZH production with the ATLAS detector

MSc Thesis of Matthias Vigl

Supervisors: Prof. Marcello Fanti, Dr. Silvia Resconi, Dr. Federica Piazza

IMPRS Recruiting workshop, November 7 2022

ロマ・山田・山田・山田・山口・山口

Analysis overview and motivations

Collaboration Site | Physics Results

ABOUT DISCOVER RESOURCES UPDATES Q SEARCH

All News Briefings Features Portraits Press Blog

Briefings

Using the Higgs boson to search for dark photons

The ATLAS Collaboration has been looking for signs of dark photons in data collected by the experiment during LHC Run 2 (2015-2018). Their newest search targets, for the first time in ATLAS, the production of a Higgs boson in association with a Z boson, with subsequent decay of the Higgs into a photon and a dark photon.

Physics Briefing | 15 September 2022

- Search for dark photon in $ZH, H \rightarrow \gamma \gamma_d$ channel: new analysis in ATLAS, using full Run 2
- My contributions: fit model (validation and final results), treatment of systematics and irreducible backgorund in the fit, optimization of binning in the Signal Region

Motivations:

- Dark Matter can be part of a Dark Sector, potentially interacting with the Standard Model Sector through portal interactions
- Dark-photon (γ_d) predicted as gauge boson of a new unbroken $U(1)_d$ group of the hypothetical Dark Sector
- The dark-photon can interact with SM sector through higher-dimensional interactions via messenger exchange: Loop of messenger fields can modify Higgs decay $H \rightarrow \gamma \gamma$

 \implies Higgs portal: $H \rightarrow \gamma \gamma_d$

The Dark-Photon analysis at ATLAS

The Dark-Photon analysis:

- Dark-photon from Higgs boson decay, in ZH production mode
- particles produced in *pp* collision at LHC
- γ_d invisible to the detector
 - total transverse momentum must balance
 - search for large transverse momentum imbalance: E_T^{miss}
- look for $\ell^+\ell^- + \gamma + E_T^{miss}$ events $(\ell = e, \mu)$
 - ee channel and $\mu\mu$ channel
 - eventually combined in the fit to data

$\vec{E}_T^{miss} = -\sum \vec{p}_T^{\mu} - \sum \vec{p}_T^{e} - \sum \vec{p}_T^{\gamma} - \sum \vec{p}_T^{\tau} - \sum \vec{p}_T^{jet} - \sum \vec{p}_T^{soft}$

▲□▶▲圖▶▲불▶▲불▶ 불]레 원٩(

The Dark-Photon analysis at ATLAS

- Dark-photon from Higgs boson decay, in ZH production mode
- particles produced in *pp* collision at LHC
- γ_d invisible to the detector
 - total transverse momentum must balance
 - search for large transverse momentum imbalance: E_T^{miss}
- look for $\ell^+\ell^- + \gamma + E_T^{miss}$ events $(\ell = e, \mu)$
 - ee channel and $\mu\mu$ channel
 - eventually combined in the fit to data

$\vec{E}_T^{miss} = -\sum \vec{p}_T^{\mu} - \sum \vec{p}_T^{e} - \sum \vec{p}_T^{\gamma} - \sum \vec{p}_T^{\tau} - \sum \vec{p}_T^{jet} - \sum \vec{p}_T^{soft}$

< 미 > < 圖 > < 필 > < 필 > < 의 < 이 < 이

The Dark-Photon analysis at ATLAS

The Dark-Photon analysis:

Signal Region (SR):

- 76 GeV $< m_{\ell\ell} <$ 116 GeV
- leading $\vec{p}_T^{\ell} > 27$ GeV, sub-leading $\vec{p}_T^{\ell} > 20$ GeV
- $\vec{p}_T^{\gamma} > 20 \text{ GeV}$
- Veto b-jet
- $\Delta \phi(ec{E}_T^{miss},ec{
 ho}_T^{\ell\ell\gamma})>$ 2.4 rad

 $E_{\tau}^{miss} > 60 \text{ GeV}$

$\vec{E}_T^{miss} = -\sum \vec{p}_T^{\mu} - \sum \vec{p}_T^{e} - \sum \vec{p}_T^{\gamma} - \sum \vec{p}_T^{\tau} - \sum \vec{p}_T^{jet} - \sum \vec{p}_T^{soft}$

▲□▶▲圖▶▲圖▶▲圖▶ 圖圖 のの(

Backgrounds of the analysis

Background estimation: 6 background categories

- Fake E_T^{miss} : from $Z(\to \ell^+ \ell^-)\gamma + jets$ and $Z(\to \ell^+ \ell^-) + jets$
- Fake photons from electrons $\mathbf{e} \to \gamma$: from $Z(\to \ell^+ \ell^-) W(\to \ell \nu)$

due to jets mismeasurements or particle misidentification, Monte Carlo (MC) simulation not accurate enough \implies use **data-driven estimates** with data control regions

Backgrounds of the analysis

Background estimation: 6 background categories

- Fake E_T^{miss} : from $Z(\to \ell^+ \ell^-)\gamma + jets$ and $Z(\to \ell^+ \ell^-) + jets$
- Fake photons from electrons $\mathbf{e} \to \gamma$: from $Z(\to \ell^+ \ell^-) W(\to \ell \nu)$

due to jets mismeasurements or particle misidentification, Monte Carlo (MC) simulation not accurate enough \implies use **data-driven estimates** with data control regions

• VVy: V(W,Z) bosons decaying leptonically \implies MC predictions corrected with a normalization factor $(k_{VV\gamma})$ obtained from data/MC comparison in a dedicated Control Region (CR) enriched of WZ process.

Backgrounds of the analysis

Background estimation: 6 background categories

- Fake E_T^{miss} : from $Z(\to \ell^+ \ell^-)\gamma + jets$ and $Z(\to \ell^+ \ell^-) + jets$
- Fake photons from electrons $\mathbf{e} \to \gamma$: from $Z(\to \ell^+ \ell^-) W(\to \ell \nu)$

due to jets mismeasurements or particle misidentification, Monte Carlo (MC) simulation not accurate enough \implies use **data-driven estimates** with data control regions

- VVy: V(W,Z) bosons decaying leptonically \implies MC predictions corrected with a normalization factor $(k_{VV\gamma})$ obtained from data/MC comparison in a dedicated Control Region (CR) enriched of WZ process.
- Top: top quark production, with subsequest semi-leptonic $t \to W(\to \ell \nu)b$ decay \implies pure MC
- ullet Wy, ${
 m H}
 ightarrow {
 m Z} \gamma \implies$ pure MC

BDT discriminant variable

In order to increase the sensitivity of the analysis a Boosted Decision Tree (**BDT**) has been implemented:

• Trained on MC samples of background + signal, with most discriminant variables as input:

 E_T^{miss} significance, $m_T(\gamma, E_T^{miss})$, $m_{\ell\ell}$, $m_{\ell\ell\gamma}$, p_T^{γ} , $\frac{|\vec{E}_T^{miss} + \vec{p}_T^{\gamma}| - p_T^{\ell\ell}}{p_T^{\ell\ell}}$ in order of importance

• The BDT score is used as discriminant variable

• Fake E_T^{miss} , $e \rightarrow \gamma$, VVy, Top, $H \rightarrow Z\gamma$, Wy

Fit strategy and statistical model

Binned maximum likelihood fit on BDT score distributions with $BR(H \rightarrow \gamma \gamma_d)$ as **parameter of interest** 6 background templates (one for each background category) + signal Uncertainties included in the fit as **nuisance parameters (NP)** θ :

$$\mathcal{L}(\textit{data}|m{k},m{ heta}) = \prod_{i \in \textit{BDT}_{\textit{bins}} + \textit{CR}_{\textit{VV}\gamma}} \textit{Pois}(N^{\textit{data}}_i|N^{\textit{exp}}_i(m{k},m{ heta})) imes \prod_{j \in \textit{syst}} G(heta_j|0,1)$$

• $\boldsymbol{k} = [BR_{H \to \gamma \gamma_d}, k_{VV\gamma}]$

•
$$N_i^{exp}(\boldsymbol{k}, \boldsymbol{\theta}) \sim BR_{H \to \gamma \gamma_d} N_i^{sig}(\boldsymbol{\theta}) + k_{VV\gamma} N_i^{VV\gamma}(\boldsymbol{\theta}) + \sum_{bkg \neq VV\gamma} N_i^{bkg}(\boldsymbol{\theta})$$

- $N_i^{sig/bkg} = n_i^{sig/bkg} \prod_{j \in syst} (1 + \theta_j \Delta_j)$ with Δ_j the value of the relative systematic uncertainty and $n_i^{sig/bkg}$ the central value from MC or from data-driven estimates
- $G(heta_j|0,1)$: Gaussian with $\mu=0$ and $\sigma=1$

• Systematic uncertainties:

- Experimental: from detector resolution, inefficiencies and mismeasurements
- Theoretical: from MC samples production

Fit strategy and statistical model

Binned maximum likelihood fit on BDT score distributions with $BR(H \rightarrow \gamma \gamma_d)$ as **parameter of interest** 6 background templates (one for each background category) + signal Uncertainties included in the fit as **nuisance parameters (NP)** θ :

$$\mathcal{L}(\textit{data}|m{k},m{ heta}) = \prod_{i \in \textit{BDT}_{\textit{bins}} + \textit{CR}_{\textit{VV}\gamma}} \textit{Pois}(N^{\textit{data}}_i|N^{\textit{exp}}_i(m{k},m{ heta})) imes \prod_{j \in \textit{syst}} G(heta_j|0,1)$$

• $\mathbf{k} = [BR_{H \to \gamma \gamma_d}, \mathbf{k}_{VV \gamma}]$

•
$$N_i^{exp}(\boldsymbol{k}, \boldsymbol{\theta}) \sim BR_{H \to \gamma \gamma_d} N_i^{sig}(\boldsymbol{\theta}) + k_{VV\gamma} N_i^{VV\gamma}(\boldsymbol{\theta}) + \sum_{bkg \neq VV\gamma} N_i^{bkg}(\boldsymbol{\theta})$$

- $N_i^{sig/bkg} = n_i^{sig/bkg} \prod_{j \in syst} (1 + \theta_j \Delta_j)$ with Δ_j the value of the relative systematic uncertainty and $n_i^{sig/bkg}$ the central value from MC or from data-driven estimates
- $\mathcal{G}(heta_j|0,1)$: Gaussian with $\mu=0$ and $\sigma=1$

• Systematic uncertainties:

- Experimental: from detector resolution, inefficiencies and mismeasurements
- Theoretical: from MC samples production

Background-only fit:

• Binned maximum-likelihood fit on SR+CR, assuming no signal

Exclusion fit:

• Binned maximum-likelihood fit on SR+CR, with $BR(H
ightarrow \gamma \gamma_d)$ as POI

Fit Validation

Two step validation on data

 \implies cross-check the fitting procedure in regions with low signal contamination

- 1) low E_T^{miss} Validation region (VR):
 - same kinematics used for the SR except for E_T^{miss}

40 GeV $< E_T^{miss} <$ 60 GeV

2) Signal Region (limited to BDT<0.5):

• same kinematics used for the SR

3 3 9 9 9 9 9 9

Fit Validation

Two step validation on data

cross-check the fitting procedure in regions with low signal contamination

- 1) low E_T^{miss} Validation region (VR):
 - same kinematics used for the SR except for E_T^{miss}

40 GeV $< E_T^{miss} < 60$ GeV

2) Signal Region (limited to BDT<0.5):

• same kinematics used for the SR

 $E_T^{miss} > 60 \,\,\mathrm{GeV}$

No discrepancies \implies background is well modeled

Statistical analysis in the search for dark photons with the ATLAS detector

Supervisors: Marcello Fanti, Silvia Resconi, Federica Piazza 7/13

313 990

Two step validation on data

 \implies cross-check the fitting procedure in regions with low signal contamination

Z+jets shape uncertainty:

- Data/bkg discrepancies arising from Low statistics in the Z+jets sample, which is a component of the fake E^{miss}_T background apply Gaussian smoothing
- Add a NP ('Smooth') to specifically address this issue: uncertainty from difference between fake E^{miss}_T shape from pure MC, and shape from smoothed Z+jets

Fit Validation: ranking plots

Pre- and post-fit breakdown of systematic variations. Obtained by re-doing the fit for each systematic uncertainty by setting to constant the corresponding nuisance parameter.

Ranking plot in VR:

Ranking plot in SR (BDT < 0.5):

Impact on total background [%]

▲□▶▲圖▶▲≧▶▲≧▶ 월]] めるの

Goal: maximise the sensitivity to γ_d signal \implies minimise expected exclusion limits (computed with exclusion fit)

• using Asimov data-set: fictive data taken equal to pre-fit background estimate

Optimization strategy:

- Start from 100 bins BDT histograms
- First bin fixed to 0 0.5 (BDT < 0.5 used for validation)
- Merge the other bins, starting from highest one, until a minimum in the expected limit is reached \rightarrow [0, 0.5, $X_{min}^{(1)}$, 1]
- Iterate procedure: [0, 0.5, $X_{min}^{(n)}, \dots, X_{min}^{(1)}, 1$] \implies [0, 0.5, 0.64, 0.77, 0.88, 0.96, 1]

Background-only fit to data in SR

Background-only fit in SR:

- Fit to data
- $k_{VV\gamma} = 1.35 \pm 0.38$
- No excess wrt SM expectations observed

 \implies Exclusion limits can be set

Post-fit

Supervisors: Marcello Fanti, Silvia Resconi, Federica Piazza 11/13

● 王 ● 王 ● ○ ○

Background-only fit to data in SR

Background-only fit in SR:

- Fit to data
- $k_{VV\gamma} = 1.35 \pm 0.38$
- No excess wrt SM expectations observed

Most impactful systematics:

- Z+jets shape systematic (\sim 21%)
- Statistical uncertainty ($\sim 16\%)$
- Jet energy scale and resolution ($\sim 16\%$)

\implies Exclusion limits can be set

BDT bin	SR 0 - 0.50	SR 0.50 - 0.64	SR 0.64 - 0.77	SR 0.77 - 0.88	SR 0.88 - 0.96	SR 0.96 - 1
Observed	910	84	59	72	42	6
Exp. SM background	910 ± 29	85.5 ± 8.7	59.9 ± 7.3	69.7 ± 7.8	41.6 ± 6.1	7.3 ± 2.0
Fake E_T^{miss}	800 ± 34	72.1 ± 8.3	45.7 ± 6.5	53.2 ± 7.1	27.9 ± 6.1	2.0 ± 1.9
$m{e} ightarrow \gamma$	21.5 ± 2.4	$\textbf{3.33} \pm \textbf{0.65}$	3.75 ± 0.77	6.4 ± 1.2	5.7 ± 1.5	1.47 ± 0.26
$oldsymbol{VV}\gamma$	44 ± 12	5.3 ± 1.6	5.8 ± 1.7	6.4 ± 1.8	5.7 ± 1.9	3.30 ± 0.97
$tar{t}$, $tar{t}\gamma$, single t	42 ± 15	4.3 ± 1.5	$\textbf{3.4}\pm\textbf{1.2}$	$\textbf{3.6} \pm \textbf{1.2}$	2.13 ± 0.80	0.50 ± 0.18
$oldsymbol{W}\gamma$	3.3 ± 1.5	0.39 ± 0.18	1.18 ± 0.55	_	0.04 ± 0.02	
$t\overline{t}H, VH$	0.15 ± 0.02	0.03 ± 0.01	0.04 ± 0.01	0.06 ± 0.01	0.09 ± 0.03	0.02 ± 0.01
Signal ($ZH \rightarrow \gamma \gamma_d$)	5.11 ± 1.34	1.98 ± 0.51	3.24 ± 1.00	5.46 ± 1.64	11.12 ± 3.06	14.87 ± 1.88

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ Ξ • Ω Q (

Results

Exclusion fit in SR:

- Fit to data, with $BR(H \rightarrow \gamma \gamma_d)$ as parameter of interest
- CLs scan to derive the 95% CL upper limit
- The exclusion limits are provided on the $BR(H \rightarrow \gamma \gamma_d)$, assuming the SM Higgs boson ZH production cross section

m_{γ_d}	$BR(H o \gamma \gamma_d)^{95}_{\mathrm{obs}}$	$BR(H o \gamma \gamma_d)^{95}_{\mathrm{exp}}$
[GeV]	[%]	[%]
0	2.28	$2.82^{+1.33}_{-0.84}$
1	2.19	$2.71^{+1.28}_{-0.81}$
10	2.21	$2.73^{+1.31}_{-0.82}$
20	2.17	$2.69^{+1.29}_{-0.81}$
30	2.32	$2.87^{+1.36}_{-0.86}$
40	2.52	$3.11\substack{+1.48 \\ -0.93}$

Conclusions

- A search for dark photon in the process $H \rightarrow \gamma \gamma_d$, using full Run 2 data-set, is presented (new analysis in ATLAS)
- The fit has been validated and performed to extract final results
- No excess is found \implies upper limits on the $H \rightarrow \gamma \gamma_d$ branching ratio are set for dark photon masses up to 40 GeV

$BR(H\to\gamma\gamma_d)$	Observed	Expected
CMS	4.6%	3.6%
ATLAS	2.3%	2.8%

CMS: http://cds.cern.ch/record/2674966

Results are public and a Paper will soon be published by the ATLAS collaboration \implies best limits at LHC for this search

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2022-064/ATLAS-CONF-2022-064.pdf

Matthias Vigl

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃|= のへぐ

Medium ID, loose isolated muons. Medium ID, loose isolated electrons

Two same flavour, opposite sign ℓ , with leading $p_T > 27$ GeV, sub-leading $p_T > 20$ GeV

Veto of any additional lepton with Loose ID and $p_T > 10$ GeV

76 GeV $< m_{\ell\ell} <$ 116 GeV

One Tight ID, Tight isolated photon with $E_T^{\gamma} > 25$ GeV

 $E_T^{miss} > 60$ GeV with $\Delta \phi(ec{E}_T^{miss}, ec{p}_T^{\ell \ell \gamma}) > 2.4$ rad

 $m_{\ell\ell\gamma} > 100 \; {
m GeV}$

 ${\sf N}_{\sf jet} \le$ 2, with $p_{T}^{\sf jet}$ > 30 GeV, $|\eta|$ < 4.5

Veto *b*-jet

• AHOI (A Horrible Optimization Instrument):

• Used to optimize the selection cuts by scanning a given optimization metric (AMS)

BDT training

- Boosted Decision Tree (**BDT**):
 - Input variables: E_T^{miss} significance, $m_T(\gamma, E_T^{miss})$, $m_{\ell\ell}$, $m_{\ell\ell\gamma}$, p_T^{γ} , $\frac{|\vec{E}_T^{miss} + \vec{p}_T^{\gamma}| p_T^{\ell\ell}}{p_T^{\ell\ell}}$ in order of importance
 - Optimization of BDT hyperparameters based on Randomized + Grid search
 - 5-fold cross-validation (SKLearn::StratifiedKFold)
 - MC weights handled through 'sample_weights' parameter of XGBoost classifier + 'scale_pos_weights' to re-weight the signal class (in order to reduce imbalance between signal and background statistics)
- Kolmogorov-Smirnov test implemented \implies no overtraining observed
- BDT results consistent among different dark-photon masses

5/25

• **ABCD method**, based on E_T^{miss} and $\Delta \phi(\overrightarrow{E}_T^{miss}, \overrightarrow{p}_T^{\ell\ell\gamma})$ variable:

$$N_A^{fakeMET} = R \frac{N_B N_C}{N_D} \quad , \quad R = \frac{N_{A+A'}^{MC} N_D^{MC}}{N_{C+C'}^{MC} N_B^{MC}}$$

- R takes into account possible correlation between the 2 variables
- N_X is number observed data in region X, after subtraction of the contribution from non fake E_T^{miss} backgrounds
- Good stability of the R values (close to 1) for different cuts on $\Delta \phi(\overrightarrow{E}_{T}^{miss}, \overrightarrow{p}_{T}^{\ell \ell \gamma})$ and E_{T}^{miss}
- Good closure in VR (R'_{data} and R'_{MC} are consistent within uncertainties)
- The uncertainty include statistical uncertainties in the B, C and D regions and the uncertainty of R coefficient from MC statistics

Channel	MC	Data-driven
ee	433.3 ± 56.9	413.1 ± 50.2
uu	670.8 ± 66.1	580.8 ± 64.1

Channel	R'_{MC}	R'_{data}
ee	1.094 ± 0.111	1.159 ± 0.056
uu	1.151 ± 0.111	1.181 ± 0.051

$\mathbf{e} \rightarrow \gamma$ background

- **Probe-e CRs** defined from analysis regions (the SR and the fake E_T^{miss} ABCD regions) by replacing the photon with an extra electron
- Yields in probe-e CRs rescaled by the **fake rate** $F_{e \rightarrow \gamma} = \frac{N_{e\gamma}}{N_{ee}}$
 - $N_{e\gamma}$ and N_{ee} from the fit of *ee* and $e\gamma$ invariant masses around Z peak
 - Signal + background model: DSCB+exp(pol3)
 - Fake rates initially inherited from mono-photon analysis, now recomputed consistently with the dark-photon analysis selections and OR (see Marcello's talk at the isol&fake forum https:

//atlas-glance.cern.ch/atlas/analysis/analyses/details?id=3145)

- Subtraction of contamination from $jet \rightarrow e$ fake based on MC truth information:
 - SF= N_{true-e}/N_{tot} obtained from MC applied to data in the probe-e CRs
- Systematic uncertainties:
 - Uncertainty on the fake-rate
 - Statistics in probe-e CR
 - 100% uncertainty on the SF uncertainty for $jet \rightarrow e$ subtraction

Region	Chan	Electron faking photons
SB	$\mu\mu$	$20.402 \pm 0.841 \pm 0.343 \pm 1.405 \pm 1.295$
SK	ee	$20.975 \pm 0.846 \pm 0.407 \pm 1.466 \pm 1.666$

Top CR

Top background validation

- An enriched **top CR** is defined by inverting the b-jet veto and removing the cuts on $\Delta \phi(\vec{E}_T^{miss}, \vec{p}_T^{\ell\ell\gamma})$ and $m_{\ell\ell}$ to allow for more statistics
- 3 regions considered
 - Inclusive $(n_b > 0)$
 - 1 top (*n_b* = 1)
 - 2 top (*n_b* = 2)
 - ⇒ conservative 20% systematic uncertainty added to the fit, to cover data/bkg from top CR

E ^{miss} region	Top sel	Data	Tot bkg	Zγ	Z+jets	Single top	tī	tγ	data/bkg
$E_{\rm T}^{\rm miss} > 60 {\rm GeV}$	inclusive	513 ± 23	435 ± 7	18 ± 2.9	12 ± 4.9	27 ± 1.9	353 ± 3.7	21 ± 0.18	1.18 ± 0.055
$E_{\rm T}^{\rm miss} > 60 {\rm GeV}$	ltop	378 ± 19	339 ± 6.7	15 ± 2.6	12 ± 4.9	24 ± 1.8	265 ± 3.2	19 ± 0.17	1.11 ± 0.06
$E_{\rm T}^{\rm miss} > 60 {\rm GeV}$	2top	135 ± 12	96 ± 2.3	2.8 ± 1.3	0.041 ± 0.035	2.7 ± 0.6	88 ± 1.8	1.8 ± 0.053	1.41 ± 0.13

Table 39: Yields of data and relevant backgrounds for $E_T^{\text{miss}} > 60$ GeV and different top categories of TopCR, *ee* channel. The $\Delta \phi(\vec{E}_T^{miss}, \vec{p}_T^{lly})$ and invariant mass selections are not applied, in order to increase the statistics.

$E_{\rm T}^{\rm miss}$ region	Top sel	Data	Tot bkg	Ζγ	Z+jets	Single top	tī	tγ	data/bkg
$E_{\rm T}^{\rm miss} > 60 {\rm GeV}$	inclusive	591 ± 24	508 ± 9.5	39 ± 7.7	-	35 ± 2.2	409 ± 3.9	23 ± 0.19	1.16 ± 0.05
$E_{\rm T}^{\rm miss} > 60 {\rm GeV}$	ltop	462 ± 21	393 ± 9.2	37 ± 7.6	-	30 ± 2	303 ± 3.4	21 ± 0.18	1.18 ± 0.06
$E_{\rm T}^{\rm miss} > 60 {\rm GeV}$	2top	129 ± 11	116 ± 2.4	1.7 ± 0.88	0.4 ± 0.24	5.5 ± 0.86	106 ± 2	2.1 ± 0.056	1.11 ± 0.10

Table 40: Yields of data and relevant background for $E_T^{\text{miss}} > 60 \text{ GeV}$ and different top categories of TopCR, $\mu\mu$ channel. The $\Delta\phi(\vec{E}_T^{miss}, \vec{p}_T^{lly})$ and invariant mass selections are not applied, in order to increase the statistics.

VVy background validation

• $3\mu + \gamma$ **VVy CR**: defined as the SR with no cuts on E_T^{miss} and $\Delta \phi(\overrightarrow{E}_T^{miss}, \overrightarrow{p}_T^{\ell\ell\gamma})$

- Focus on $\mu\mu$ to avoid contamination from jet
 ightarrow e
- Dominant contribution from $e \rightarrow \gamma$ in $\mu \mu e \implies$ keep $\mu \mu \mu$
- Too low stat with 4 leptons
- data/bkg: 1.3 ± 0.25

Lepton sel	Tot bkg	VVγ	$Z\gamma$	Z+jets	VV
inclusive	92 ± 3.9	41 ± 0.46	7.6 ± 2.7	2.8 ± 2.7	37 ± 0.61
2mu+1el	64 ± 3.6	16 ± 0.3	6 ± 2.4	3.1 ± 2.7	36 ± 0.58
3mu	24 ± 1.4	20 ± 0.34	1.6 ± 1.3	-0.25 ± 0.2	0.89 ± 0.17
4mu	2.3 ± 0.051	2.2 ± 0.047	0 ± 0	0 ± 0	0.0099 ± 0.018

Table 41: Yields of relevant backgrounds in different leptons categories of $VV\gamma$ CR. The E_T^{miss} and $\Delta\phi(\vec{E}_T^{miss}, \vec{p}_T^{lly})$ selections are not applied, in order to maximize the statistics

• BDT input variables distributions show good data/mc agreement

 \implies VVy CR added in the fit

Standard Model Total Production Cross Section Measurements

DEFINITION

LHC / HL-LHC Plan

EXCAVATION BUILDINGS

	ZH	VBF	ggF
\sqrt{s}		σ	
13 TeV	0.880 pb	3.766 pb	48.61 pb
14 TeV	0.981 pb	4.260 pb	54.72 pb
27 TeV	2.463 pb	11.838 pb	146.65 pb

significance	HL-LHC (14 TeV)	HE-LHC (27 TeV)
2σ	0.012 %	0.0052 %
5σ	0.030 %	0.013 %

Systematic uncertainty	Short description			
1	Event			
Luminosity	uncertainty on the total integrated luminosity			
PRW_DATASF	pileup profile uncertainty			
Electrons				
EL_EFF_Trigger_TOTAL_INPCOR_PLUS_UNCOR EL_EFF_Reco_TOTAL_INPCOR_PLUS_UNCOR EL_EFF_ID_TOTAL_INPCOR_PLUS_UNCOR EL_EFF_ChargeIDSel_TOTAL_INPCOR_PLUS_UNCOR EL_EFF_Iso_TOTAL_INPCOR_PLUS_UNCOR EG_SCALE_ALL EG_RESOLUTION_ALL	trigger efficiency uncertainty reconstruction efficiency uncertainty ID efficiency uncertainty charge ID efficiency uncertainty isolation efficiency uncertainty energy scale uncertainty energy resolution uncertainty Muons			
MUON_EFF_IrigSystUncertainty MUON_EFF_TrigStatUncertainty	trigger efficiency uncertainties			
MUON_EFF_RECO_STAT MUON_EFF_RECO_SYS	reconstruction and ID efficiency uncertainty for $p_{\rm T}$ > 15 GeV			
MUON_EFF_RECO_STAT_LOWPT MUON_EFF_RECO_SYS_LOWPT	reconstruction and ID efficiency uncertainty for $p_{\rm T}$ < 15 GeV			
MUON_EFF_ISO_STAT MUON_EFF_ISO_SYS	isolation efficiency uncertainty			
MUON_EFF_TTVA_STAT MUON_EFF_TTVA_SYS	track-to-vertex association efficiency uncertainty			
MUON_SCALE MUON_ID MUON_MS MUON_SAGITTA_RESBIAS MUON_SAGITTA_RHO	energy scale uncertainty energy resolution uncertainty from inner detector energy resolution uncertainty from muon system muon sagitta-related uncertainty muon sagitta-related uncertainty			

• All experimental systematic uncertainties provided by PMG are included in the analysis

Systematic uncertainty	Short description					
	jets					
JET_EffectiveNP	energy scale uncertainty split into 15 components					
JET_BJES_Response	jet-related uncertainty					
JET_EtaIntercalibration_Modelling	jet-related uncertainty					
JET_EtaIntercalibration_NonClosure_2018data	jet-related uncertainty					
JET_EtaIntercalibration_NonClosure_highE	jet-related uncertainty					
JET_EtaIntercalibration_NonClosure_negEta	jet-related uncertainty					
JET_EtaIntercalibration_NonClosure_posEta	jet-related uncertainty					
JET_EtaIntercalibration_TotalStat	jet-related uncertainty					
JET_Flavor_Composition	jet-related uncertainty					
JET_Flavor_Response	jet-related uncertainty					
JET_JER_DataVsMC_MC16	jet-related uncertainty					
JET_JER_EffectiveNP	jet energy resolution uncertainty split into 11 parameters					
JET_JvtEfficiency	jet-related uncertainty					
JET_fJvtEfficiency	jet-related uncertainty					
JET_Pileup_OffsetMu	jet-related uncertainty					
JET_Pileup_OffsetNPV	jet-related uncertainty					
JET_Pileup_PtTerm	jet-related uncertainty					
JET_Pileup_RhoTopology	jet-related uncertainty					
JET_PunchThrough_MC16	jet-related uncertainty					
JET_SingleParticle_HighPt	jet-related uncertainty					
	Flavour tagging					
FT_EFF_B_systematics	b-jet tagging efficiency					
FT EFF C systematics	c-jet tagging efficiency					
FT EFF Light systematics	light-jet tagging efficiency					
FT_EFF_extrapolation	h-jet tagging efficiency with high nt extrapolation					
ET EFE extrapolation from charm	a jet tagging efficiency with high pt extrapolation					
FI_EFF_extrapolation_from_charm	c-jet tagging enciency with high pt extrapolation					
	$E_{\rm T}^{\rm miss}$ -Trigger and $E_{\rm T}^{\rm miss}$ -Terms					
xeSFTrigWeight	trigger efficiency uncertainty					
MET SoftTrk ResoPerp	track-based soft term related to transverse resolution uncertainty					
MET_SoftTrk_ResoPara	track-based soft term related to longitudinal resolution uncertainty					
MET_SoftTrk_ScaleUp	track-based soft term related to longitudinal scale uncertainty					
MET_SoftTrk_ScaleDown	track based soft term related to longitudinal scale uncertainty					
ME1_SoltTik_ScaleDown	track-based soft term related to longitudinal scale uncertainty					
Additional uncertainties on background estimations						
FAKEMET_SYST	uncertainty on the data-driven fake E_{T}^{miss} estimate					
ELEFAKE SYST	uncertainty on the data-driven $e \rightarrow \gamma$ estimate					
Smooth uncertainty on the shape of fake E ^{miss} due to 7 strong low statistics						
TOD SVST	uncertainty on the shape of face Σ_{T} – due to Σ should low statistics					
10F_3131	uncertainty on top backgrounds normalisation from top CR					

- Estimation of the QCD scale, PDF+ α_s and Parton Shower.
- Estimation performed in bins of BDT: [0, 0.5, 0.64, 0.77, 0.88, 0.96, 1]
- ${\, \bullet \,}$ Bins with zero events \rightarrow use systematic from the first bin

QCD scale

PDF+ α_s

Process	[0, 0.5]	[0.5, 0.64]	[0.64, 0.77]	[0.77, 0.88]	[0.88, 0.96]	[0.96, 1]
ggZHHyyd0	+25.4	+25.2	+25.4	+25.6	+25.9	+25.7
qqZHHyyd0	+4.0	+3.7 -3.9	+2.8 -4.4	+2.6 -3.6	+2.1 -3.2	+2.4
ggZHHyyd1	+25.4 -19.2	+25.3 -19.2	+25.4 -19.2	+25.5 -19.3	+25.8 -19.4	+25.7 -19.4
qqZHHyyd1	+4.6 -4.3	+3.4 -4.1	+2.7 -4.4	+3.1 -4.5	+2.4 -3.8	+2.5
ggZHHyyd10	+25.6 -19.3	+25.3 -19.2	+25.4 -19.2	+25.5 -19.3	+25.9 -19.5	+25.7 -19.4
qqZHHyyd10	+4.7 -4.4	+5.0 -4.3	+3.0 -4.1	+2.3 -3.9	+3.5 -3.4	+2.7
ggZHHyyd20	+25.5 -19.3	+25.3 -19.1	+25.3 -19.2	+25.6 -19.3	+25.9 -19.5	+25.6 -19.3
qqZHHyyd20	$^{+3.9}_{-4.1}$	+3.5 -4.1	+3.6 -3.5	+2.6 -3.8	+2.7 -3.8	+2.7 -3.7
ggZHHyyd30	+25.4 -19.2	+25.3 -19.2	+25.3 -19.2	+25.6 -19.3	+25.9 -19.5	+25.7 -19.4
qqZHHyyd30	+3.2 -4.1	+3.3 -3.7	+3.1 -3.8	+2.2 -3.5	+2.9 -3.2	+2.5
ggZHHyyd40	+25.3 -19.2	+25.4 -19.2	+25.4 -19.2	+25.7 -19.4	+25.9 -19.5	+25.8 -19.4
qqZHHyyd40	+4.2 -4.1	+2.8 -4.0	+2.4 -3.7	+3.6 -3.7	+2.3 -3.3	+2.2 -3.0
$VH(Z\gamma)$	$^{+2.3}_{-2.9}$	+2.4 -3.4	+3.1 -3.8	+3.5 -3.4	+2.9 -3.2	+3.9 -3.9
$VV\gamma$	+19.2 -8.9	+17.7 -6.8	+20.8 -8.4	+23.1 -9.6	$^{+14.5}_{-14.1}$	+19.3 -7.5
$W\gamma_{ewk}$	+6.4	+11.3 -15.1	+8.0 -10.5	+0.0	+16.7 -19.5	+0.0
$W\gamma_{qcd}$	+26.7 -53.5	+10.9	+89.0 -28.2	+0.0 0.0	+0.0 0.0	+0.0 0.0
Wtγ	+10.1 -8.4	+10.3 -8.5	+10.3 -8.5	+10.3 -8.5	+10.3 -8.5	+10.4 -8.6
single Top	+7.3 -6.9	+0.0	+0.0	+0.0	+0.0	+0.0
$ttH(Z\gamma)$	+2.3	+3.2 -7.7	+3.0 -7.0	+1.9 -5.8	+5.8 -8.6	+3.1 -7.9
ttV	+26.0 -18.6	+25.7 -18.4	+27.0 -19.1	+25.6 -18.2	+25.6 -18.4	$^{+24.0}_{-17.2}$
ttbar	$^{+13.3}_{-12.2}$	+17.7 -14.0	+23.3 -17.9	+10.1 -9.7	$^{+10.8}_{-10.1}$	+0.0 0.0
$Z\gamma_{qcd}$	+25.6 -20.0	+19.9	+53.1 -7.0	+5.9 -22.7	+56.4	+11.8 -33.3
Z_{qcd}	+2.5 -4.8	+9.6 -3.4	+5.5 -6.2	$^{+28.7}_{-28.1}$	+16.3 -7.7	+0.0 0.0
Zewk	+5.2	+0.0	+0.0	+39.4	+0.0	+0.0

Process	[0, 0.5]	[0.5, 0.64]	[0.64, 0.77]	[0.77, 0.88]	[0.88, 0.96]	[0.96, 1]
ggZHHyyd0	±1.1	±1.1	±1.1	±1.1	±1.1	± 1.0
qqZHHyyd0	±1.1	±1.1	±1.1	±0.9	±0.6	±0.4
ggZHHyyd1	±1.1	±1.2	±1.1	±1.1	±1.1	±1.1
qqZHHyyd1	±1.2	±1.2	±1.0	±0.8	±0.6	±0.4
ggZHHyyd10	±1.1	±1.2	±1.1	±1.1	±1.1	±1.0
qqZHHyyd10	±1.2	±1.0	±0.9	±0.9	±0.5	±0.4
ggZHHyyd20	±1.1	±1.2	±1.1	±1.1	±1.1	±1.0
qqZHHyyd20	±1.3	±1.3	±1.0	±0.7	±0.5	±0.4
ggZHHyyd30	±1.1	±1.2	±1.1	±1.1	±1.1	±1.0
qqZHHyyd30	±1.2	±1.1	±1.0	±0.7	±0.6	±0.4
ggZHHyyd40	±1.1	±1.2	±1.1	±1.1	±1.1	±1.0
qqZHHyyd40	±1.2	±1.3	±0.9	±0.8	±0.6	±0.4
$VH(Z\gamma)$	±0.9	± 0.8	±0.8	±0.5	±0.5	± 0.8
ννγ	±0.5	±1.1	±1.4	±1.1	±1.4	±1.6
Wyewk	±5.6	±7.2	±10.0	±0.0	±10.0	±0.0
$W\gamma_{qcd}$	±9.9	± 8.1	±7.2	±0.0	±0.0	± 0.0
Wtγ	±0.2	±0.7	±0.8	±0.9	±0.9	±2.1
single Top	±10.0	±0.0	±0.0	±0.0	±0.0	±0.0
$ttH(Z\gamma)$	±2.1	±2.3	±2.4	±2.3	±3.0	±3.9
ttV	±0.3	±1.0	±1.1	±1.2	±1.5	± 2.8
ttbar	±1.8	±3.5	±5.1	±4.0	±5.6	±0.0

Parton Shower

Process	[0, 0.5]	[0.5, 0.64]	[0.64, 0.77]	[0.77, 0.88]	[0.88, 0.96]	[0.96, 1]
ggZHHyyd0	± 144.1	±101.0	±35.9	±21.2	±0.2	±36.5
qqZHHyyd0	±2.9	±5.3	±6.0	±0.4	±2.5	±5.8
$W\gamma_{ewk}$	± 106.4	±100.0	±100.0	±0.0	±100.0	±0.0
$W\gamma_{qcd}$	±27.9	± 100.0	± 48.4	±0.0	±0.0	±0.0
Wtγ	±0.1	±2.5	±0.5	±2.5	±20.1	±70.9
ttV	±2.7	±3.1	±15.8	±10.5	±4.9	±1.6
ttbar	±5.4	±43.2	±44.3	±67.9	±73.4	±0.0
$Z\gamma_{qcd}$	±0.6	±27.5	±0.4	± 128.9	± 40.8	±30.3
Z_{qcd}	± 8.0	±4.0	±67.1	1 ± 21.6 2 ± 99.0	± 24.2	±0.0
νγγ	±6.6	±84.0	±10.0		±19.1	±46.7
Z_{ewk}	±137.3	±0.0	±0.0	±100.0	±0.0	±0.0
ttW	±3.6	±130.8	±10.9	±44.5	±100.0	± 100.0

Table 52: Difference from nominal of the PS uncertainties in the signal region for different process in *ll* channel.

Supervisors: Marcello Fanti, Silvia Resconi, Federica Piazza

-6.6 0.0 0.0 -24.6 0.0 0.0 Table 49: Difference from nominal for upper and lower bound of the PDF+ α_s uncertainties in the signal region for

Table 46: Difference from nominal for upper and lower bound of the scale variation uncertainties in the signal region different process in *ll* channel. for different process in *ll* channel.

15/25

- High impact of experimental systematics due to low statistics (in particular in Z+jets) → high fluctuations in syst variations
 - Smoothing applied using the TRexDefault method from the CommonSystSmoothingTool with high tolerance (50%)
 - Merge bins until stat uncertainty goes below 50% threshold
 - Using '353QH twice' algorithm (Friedman in Proc.of the 1974 CERN School of Computing, Norway, 11-24 August, 1974.) to avoid artificial flattening of uncertainties due to rebinning

 All underconstrained NPs are characterized by up and down variations moving in the same direction in at least one bin → Solved through symmetrization of the problematic systematics, by taking tha maximum up or down variation.

Smoothing of Z strong: 'Smooth' systematic uncertainty

- Experimental systematics try to "heal" data/bkg discrepancies arising from low stat in Z strong
- Add a NP ('Smooth') to specifically address this issue: uncertainty from difference between fake MET shape from pure MC, and shape from smoothed Z strong (gaussian smoothing)

Pull plot in SR

(日)

BDT bin	0 - 0.50	0.50 - 0.64	0.64 - 0.77	0.77- 0.88	0.88 - 0.96	0.96 - 1
Total(statistical+systematic) uncertainty	3.1%	10%	12%	11%	15%	28%
Statistical uncertainty	3.1%	9.9%	12%	11%	14%	16%
Fake E_T^{miss} shape	0.17%	1.2%	0.15%	0.76%	2.4%	21%
Jet E scale and resolution	0.09%	4.3%	2.6%	1.1%	0.65%	16%
Electron, photon E scale and resolution	0.04%	0.60%	1.0%	0.21%	1.7%	7.4%
Muon E scale and resolution	0.08%	0.10%	0.28%	0.67%	1.3%	4.2%
Fake E_T^{miss} data-driven	0.52%	0.29%	0.04%	0.04%	0.29%	3.3%
E_T^{miss} soft term scale and resolution	0.27%	0.10%	0.50%	0.35%	0.33%	0.85%
Top normalization	0.07%	0.09%	0.14%	0.13%	0.07%	0.42%
Electrons faking photons data-driven	0.03%	0.10%	0.12%	0.12%	0.06%	0.34%
Reweighting of $\langle \mu angle$ in MC simulation	0.07%	0.09%	0.28%	0.33%	0.20%	0.23%
Flavour tagging eff.	0.02%	0.15%	0.13%	0.11%	0.07%	0.20%
Photon ID/iso/reco eff.	0.00%	0.10%	0.12%	0.11%	0.08%	0.17%
Muon trigger/ID/iso/reco eff.	0.01%	0.15%	0.10%	0.06%	0.07%	0.16%
Electron trigger/ID/iso/reco eff.	0.01%	0.18%	0.09%	0.13%	0.11%	0.15%
Theoretical top	0.09%	0.04%	0.03%	0.17%	0.17%	0.46%
Theoretical $W\gamma$	0.03%	0.13%	0.10%	0.15%	0.09%	0.44%
Theoretical $VV\gamma$	0.03%	0.10%	0.12%	0.08%	0.08%	0.35%
Theoretical Higgs	0.01%	0.10%	0.14%	0.08%	0.07%	0.22%
Theoretical fake E_T^{miss}	0.06%	0.13%	0.15%	0.28%	0.36%	0.31%

20 / 25

Correlation matrix in SR

21/25

The most often studied mediator in recent times is kinetically-mixed dark photon, where the two gauge groups U(1) and $U(1)_d$, concern the SM photon and the dark photn respectively. Focusing on the interactions with just the photon, the vacuum interactions for this portal are:

$$\mathcal{L}_{0} = -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{1}{4} F_{d\mu
u} F^{\mu
u}_{d} - rac{\epsilon}{2} F_{\mu
u} F^{\mu
u}_{d} + rac{1}{2} m_{d}^{2} A_{d\mu} A^{\mu}_{d} + e J_{\mu} A^{\mu} + e' J_{d\mu} A^{\mu}_{d}$$

The physics arising from the Lagrangians above depends on the considered kind of dark photon:

• the massless kind, which does not couple directly to any of the SM currents and interacts instead with ordinary matter only through operators of dimension higher than four: a field redefinition $\hat{A}_{d\mu} = A_{d\mu} - \epsilon A_{\mu}$ eliminates the kinetic mixing term, leaving the following interactions

$$\mathcal{L}_0 = -rac{1}{4}(1-\epsilon^2) F_{\mu
u}F^{\mu
u} - rac{1}{4}F_{d\mu
u}F^{\mu
u}_d + eJ_\mu A^\mu + e'(\hat{A}^\mu_d + \epsilon A^\mu)J_{d\mu}$$

In the absence of a dark current J_d , we would have a completely decoupled vector \hat{A}_d with no observable effects. Hence in the massless vector limit, we expect that the only limits would come from effects that involve the DM.

• the *massive* kind, which couples to ordinary matter through a current (with arbitrary charge), that is, a renormalizable operator of dimension four. The massless limit of this case does not correspond to the massless case above.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ★□▶ ◆□▶

Dark photon experimental status

のすの 正則 エル・エリ・エリ・

