Aspects of the Inner Entanglement Inside Black Holes in

the Presence of Memory Burden

Houssem Amami

LMU, Munich

In collaboration with:
Prof. Dr. Gia Dvali,

Oleg Kaikov

IMPRS Recruiting Workshop
MPP Munich

07.11.2022



© Introduction

© Memory burden and inner entanglement

© Difference in timescales

@ Effect of the memory burden on the inner entanglement

© Conclusion



Introduction: Quantum N-portrait

Black holes are bound state of large N soft gravitons of wavelength A = Rg
at a critical point where a large number of gapless(holographic) modes
emerge [G.Dvali, C.Gomez '11 '12].
Properties of semiclassical black holes such as:

o Thermal(Hawking) Radiation: T = %

o Half decay time: thahc:Rf‘Mf,

o Bekenstein-Hawking entropy: Sgy ~ f—:
i3

are very well understood in Quantum N-portrait. Quantum corrections are

~

1
N
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Introduction: Quantum N-portrait

The Quantum N-portrait predicts new phenomena

@ Inner entanglement: entanglement of black hole constituents among
each other

@ Memory burden effect: load of quantum information(QI) stored in the
system stabilizes it.

A large class of systems(even non-relativistic) exhibits properties similar to
those of black holes, given that they have a large capacity of memory
storage [G.Dvali '20]

Goal: study these two phenomena and investigate how the first affects the
second

Idea: study a simple prototype model, to gain knowledge about the black
hole beyond semiclassical description.



Prototype model

Guidelines [G.Dvali "17]:

@ Large number of hard quanta(memory modes) d; with energy gap .
QI can be stored in memory patterns |ny, ny,.., ng).
High entropy = degenerecy in microstates — d; gapless

@ soft modes(master mode) dy, attractively coupled to memory burden
and are highly occupied to a certain critical level N, s.t. memory modes
become gapless.

@ allow the system to deplete via occupation numbers exchange of master
modes with an external (soft)mode by(Hawking radiation)

@ coupling constants Cy ~ Cy,, ~ N%
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Memory burden

Effect shared by systems that have high capacity of memory storage.

Back reaction of the memory modes d; on the master modes d
= stabilization of the system|[G.Dvali '18].



Memory burden

Effect shared by systems that have high capacity of memory storage

Back reaction of the memory modes d; on the master modes d
= stabilization of the system|[G.Dvali '18].

u= Z kano



Memory burden

Effect shared by systems that have high capacity of memory storage.
Back reaction of the memory modes d; on the master modes d
= stabilization of the system|[G.Dvali '18].

u= Z kano

occupation number
25

20




Memory burden

Effect shared by systems that have high capacity of memory storage.
Back reaction of the memory modes d; on the master modes d
= stabilization of the system|[G.Dvali '18].
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= large load of QI ties the system to its initial state



Weakening the memory burden effect

Can we weaken the memory burden effect without lowering the
amount of QI? [G.Dvali, S.Zell, M.Michel, L.Eisemann "18|
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Weakening the memory burden effect

Can we weaken the memory burden effect without lowering the
amount of QI? [G.Dvali, S.Zell, M.Michel, L.Eisemann "18|

yes: increase order of nonlinearity of master/memory modes interaction

N g K R p-1
HD(I——)Z€H}C—>(1——) Zenk p—fi= p(l——) I
N/ o3 N¢
5
—— fifor p=4

41 i for p=10
c [—un
84 ]
=
g of
g
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Conclusion: memory burden strength can be varied by varying the order of
nonlinearity p
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Inner entanglement

Two entanglements happening simultaneously:
e Standard: entanglement of black hole with outgoing radiation[Page '93]
o New: self entanglement of black hole constituents(scrambling)[Dvali

'18]
not captured by semiclassical physics
K
||n) = |n1, ny,... n[() —_— ZCﬁl'flz ..... fix |fl1, 7712,..., fl]()
fij

scrambling




Measure for the inner entanglement

Inner entanglement can be measured by:
o define one-particle density matrix p; =Trg,,. a4 Pmem

e Von Neumann entropy S; = —=Tr(p,Inp,)
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Measure for the inner entanglement

Inner entanglement can be measured by:
o define one-particle density matrix p; =Trg,,. a4 Pmem
__1
@ Von Neumann entropy S; = —+ Tr(p,Inp,)

Time evolve the state:

||n>=| NC) 0 >® |n11---ynK> _>|NC_AN)AN>®|ﬁ1y--)ﬁ/K>
~ Y ——

ng Mo memory pattern

One particle density matrix:

_'Saobo/mem -8
— ~=
P trace out agby P em trace out {ap..ax} P,
But,
Pmem IS @ Mixed state in general

S1 = inner entanglemeent + (classical)statistical correlations(agby effects)
= S is not a reliable measure for inner entanglement



Two memory sectors

Trick: Add a second memory sector {aj,.., ay,} [G.Dvali 18]
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Two memory sectors

Trick: Add a second memory sector {aj,.., ay,} [G.Dvali 18]

A K
I:IZ(:‘ofl() +€0ﬁ“lo + Co(ﬁgbo + h.C) + (1 - —0) Z €flk
Ne/ o1
K’ K K
o ’ IN( AT Al
+(1- Y e +Cni Y. Y filk,k)(aa, +h.c)
( Ne ANC)k’—l {k:w:1 ¢

2nd sector becomes gapless for ng = N, = N. — AN,
Time evolution:

| Ne, 0 )®|ny,..., ng)® 0,...,0) — |[N; — AN, AN) 8|ty ..., fig)® |1, .., n )
—_~ T - — = —

ng Mo 1st sector  2nd sector

At ng= N, —AN,: Rewriting of QI from first to second sector



Two regimes

Idea: Try to isolate the classical correlations contribution in S; by
considering two distinct regimes:
@ 1st regime: AN, ~ 1: The system reaches gaplessness for the 2nd sector
no — N, — AN,
= rewriting of QI (n), #0)



Two regimes

Idea: Try to isolate the classical correlations contribution in S; by
considering two distinct regimes:
@ 1st regime: AN, ~ 1: The system reaches gaplessness for the 2nd sector
no — Nz — AN,
= rewriting of QI (n), #0)
@ 2nd regime: AN, > 1: The system does not reach gaplessness of the
2nd sector ng ~ N.— AN, =
2nd sector is not excited 1}, =0
In the second regime we expect inner entanglement between two sectors to
vanish. only the contribution from statistical correlations is left.



First regime AN, ~ 1

1st regime: n;c, £0
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1st regime: n;c, £0
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First regime AN, ~ 1

1st regime: n;c, £0
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. —1 H -3
° Sak/a;c, has local maximum at ¢~ C;,; and global maximum at ¢t~ C;,,

@ Only a global maximum at ¢~ C,3

Claim: global maximum at C;2 is coming from the statistical correlations
i.e tracing out agbg



second regime AN, > 1

2nd regime: 71}, =0
Sayage Sabimem
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e only classical correlations contribution is left in S, /4
k'
= both curves are the same up to a scaling factor

o for t~C,_nl, Sabimem =0

Conclusion: For time scales ¢~ C;}
tracing out agbg

+ P mem 1S almost pure even after
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The one-particle entropy S is then a reliable measure for inner entanglement
for t ~C}
Effect of memory burden on the inner entanglement:

1 e Data

7 — Bestfit

I it it it it |
2 4 6 8 10 12

p (memory burden strength)

Conclusion: As the memory burden strength decreases, the memory modes
take less time to fully entangle



Summary and outlook

@ Increasing the nonlinearity of the interaction decreases the strength of
the memory burden

@ Soft/hard modes entanglement takes time order of magnitude higher
than the inner entanglement. Since C,, ~ % this difference in
timescales becomes more dramatic for large N

@ The stronger the memory burden effect the longer takes the system to
fully entangle



Summary and outlook

@ Increasing the nonlinearity of the interaction decreases the strength of
the memory burden

@ Soft/hard modes entanglement takes time order of magnitude higher
than the inner entanglement. Since C,, ~ % this difference in
timescales becomes more dramatic for large N

@ The stronger the memory burden effect the longer takes the system to
fully entangle

@ extend the model to include species and investigate their effect

@ Similarities with De Sitter case: Applications in inflationary cosmology:
fsmax provides an internal quantum clock= gives an upper bound on
the graceful exist from De Sitter(end of inflation)[G.Dvali S.Zell
M.Michel L.Eisemann '18]
= investigate how bound changes due to memory burden
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Numerical parameters

Values of the parameters are motivated by the quantum N-portrait:

N.=20, K=K'=4, e=Rj'=1, e:eox/f(~\/1G_N)
Co=Cm=0.1
|Al || ] 5] €10.5,1]
AN, € [0, N,]

The initial state has N, = § occupied memory modes.

K K
Nm= Z flk-l- Z flkr=2
k=1 k'=1



Bounds on Couplings

The coupling must be ~ Nic so that gaplessness is not spoiled
At gaplessness:

a a
. 1
~ aj 0 ~ N
H -] “ 1 Ne
ag ~ N 0

One can diagonlize the Hamiltonian via Bogolyubov transformation|G.Dvali,
M.Panchenko '16] and the memory modes acquire an effective gap. This
effective gap is NLE suppressed.

It has been shown in [G.Dvali S.Zell M.Michel L.Eisemann '21] that (using

our numerical values):

1

2

@ rewriting of information from 1st to 2nd sector happens at the ideal
value C;, =0.1

e Cp<



Consistency check: Page's time

Page's time: maximal entanglement of B.H(dy & {ay, a},}) and outgoing
radiation(by) at half decay.

P
Smax

15

1 1 1 J ANC
0 5 10 15 20

£S,.ax = Lhalf = [Page = consistent with semiclassical picture
N.b: This does not mean that we can retrieve information after half decay
since the information is controlled exclusively by the memory modes



3rd regime: AN, =0

For the regime where both sectors are gapless at the same critical value:
N, = N. Analytic expression for ng():

(an+): n’,)Z
W T
2 g2 = E Tyl
4C5 +e€ N
= No entanglement between soft and memory modes
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