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Introduction: Quantum N-portrait

Black holes are bound state of large N soft gravitons of wavelength λ= RS

at a critical point where a large number of gapless(holographic) modes
emerge [G.Dvali, C.Gomez ’11 ’12].
Properties of semiclassical black holes such as:

Thermal(Hawking) Radiation: T = 1
R

Half decay time: thalf = R3M 2
p

Bekenstein-Hawking entropy: SBH ∼ R2

L2
p

are very well understood in Quantum N-portrait. Quantum corrections are

∼ 1

N



Introduction: Quantum N-portrait

The Quantum N-portrait predicts new phenomena
Inner entanglement: entanglement of black hole constituents among
each other
Memory burden effect: load of quantum information(QI) stored in the
system stabilizes it.

A large class of systems(even non-relativistic) exhibits properties similar to
those of black holes, given that they have a large capacity of memory
storage [G.Dvali ’20]
Goal: study these two phenomena and investigate how the first affects the
second
Idea: study a simple prototype model, to gain knowledge about the black
hole beyond semiclassical description.
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Prototype model

Guidelines [G.Dvali ’17]:
Large number of hard quanta(memory modes) âk with energy gap ϵ.
QI can be stored in memory patterns |n1,n2, ..,nk〉.
High entropy ⇒ degenerecy in microstates → âk gapless
soft modes(master mode) â0, attractively coupled to memory burden
and are highly occupied to a certain critical level Nc s.t. memory modes
become gapless.
allow the system to deplete via occupation numbers exchange of master
modes with an external (soft)mode b̂0(Hawking radiation)
coupling constants C0 ∼Cm ∼ 1

Nc

Ĥ =ϵ0

â†
0 â0︷︸︸︷
n̂0 +ϵ0

b̂†
0b̂0︷︸︸︷

m̂0 +C0

(
â†

0b̂0 +h.c
)
+

eff. gap ϵ̃︷ ︸︸ ︷(
1− n̂0

Nc

)
ϵ

K∑
k=1

n̂k

+Cm

K∑
k=1

K∑
l=1
l>k

(
â†

k âl +h.c
) (1)



Memory burden

Effect shared by systems that have high capacity of memory storage.
Back reaction of the memory modes âk on the master modes â0

⇒ stabilization of the system[G.Dvali ’18].

µ=
K∑

k=1
nk

∂ϵ̃

∂n0
=−

K∑
k=1

ϵ

Nc
nk with ϵ̃=

(
1− n̂0

Nc

)
ϵ

µ= 0 µ ̸= 0

⇒ large load of QI ties the system to its initial state
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Weakening the memory burden effect

Can we weaken the memory burden effect without lowering the
amount of QI? [G.Dvali, S.Zell, M.Michel, L.Eisemann ’18]

yes: increase order of nonlinearity of master/memory modes interaction

Ĥ ⊃
(
1− n̂0

Nc

) K∑
k=1

ϵn̂k →
(
1− n̂0

Nc

)p K∑
k=1

ϵn̂k µ→ µ̃= p
(
1− n0

Nc

)p−1
µ

Conclusion: memory burden strength can be varied by varying the order of
nonlinearity p
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Inner entanglement

Two entanglements happening simultaneously:
Standard: entanglement of black hole with outgoing radiation[Page ’93]

New: self entanglement of black hole constituents(scrambling)[Dvali
’18]
not captured by semiclassical physics

|in〉 = |n1,n2, ...,nK 〉 −→
K∑
ñ j

cñ1,ñ2,...,ñK |ñ1, ñ2, ..., ñK 〉

scrambling−−−−−−−−→
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Measure for the inner entanglement

Inner entanglement can be measured by:
define one-particle density matrix ρ1 = Tra2,..,ak ρmem

Von Neumann entropy S1 =− 1
n Tr

(
ρ1 lnρ1

)

Time evolve the state:

|in〉 = | Nc︸︷︷︸
n0

, 0︸︷︷︸
m0

〉⊗ |n1, ...,nK 〉︸ ︷︷ ︸
memory pattern

−→ |Nc −∆N ,∆N〉⊗ |ñ1, ..., ñK 〉

One particle density matrix:

ρ trace out a0b0−−−−−−−−−−−→

→Sa0b0/mem︷ ︸︸ ︷
ρmem trace out {a2..aK }−−−−−−−−−−−−−−→

→S1︷︸︸︷
ρ1

But,
ρmem is a mixed state in general
S1 = inner entanglemeent + (classical)statistical correlations(a0b0 effects)
⇒ S1 is not a reliable measure for inner entanglement
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Two memory sectors

Trick: Add a second memory sector {a′
1, .., a′

K ′} [G.Dvali ’18]

Ĥ =ϵ0n̂0 +ϵ0m̂0 +C0

(
â†

0b̂0 +h.c
)
+

(
1− n̂0

Nc

) K∑
k=1

ϵn̂k

+
(
1− n̂0

Nc −∆Nc

) K ′∑
k ′=1

ϵn̂′
k ′ +Cm

{ K∑
k=1

K ′∑
k ′=1

f1(k,k ′)
(
â†

k â′
k ′ +h.c

)
+

K∑
k=1

K∑
l=1
l>k

f2(l ,k)
(
â†

k âl +h.c
)+ K ′∑

k ′=1

K ′∑
l ′=1
l ′>k ′

f3(l ′,k ′)
(
â†

k ′ â
′
l ′ +h.c

)}

2nd sector becomes gapless for n0 = N ′
c = Nc −∆Nc

Time evolution:

| Nc︸︷︷︸
n0

, 0︸︷︷︸
m0

〉⊗|n1, ...,nK 〉︸ ︷︷ ︸
1st sector

⊗ |0, ...,0〉︸ ︷︷ ︸
2nd sector

→|Nc −∆Nc ,∆Nc〉⊗|ñ1, ..., ñK 〉⊗
∣∣n′

1, ..,n′
K ′

〉
At n0 = Nc −∆Nc : Rewriting of QI from first to second sector



Two memory sectors

Trick: Add a second memory sector {a′
1, .., a′

K ′} [G.Dvali ’18]
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k âl +h.c
)+ K ′∑

k ′=1

K ′∑
l ′=1
l ′>k ′

f3(l ′,k ′)
(
â†
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Two regimes

Idea: Try to isolate the classical correlations contribution in S1 by
considering two distinct regimes:

1st regime: ∆Nc ∼ 1: The system reaches gaplessness for the 2nd sector
n0 → Nc −∆Nc

⇒ rewriting of QI (n′
k ′ ̸= 0)

2nd regime: ∆Nc ≫ 1: The system does not reach gaplessness of the
2nd sector n0 ̸→ Nc −∆Nc ⇒
2nd sector is not excited n′

k ′ = 0

In the second regime we expect inner entanglement between two sectors to
vanish. only the contribution from statistical correlations is left.



Two regimes

Idea: Try to isolate the classical correlations contribution in S1 by
considering two distinct regimes:

1st regime: ∆Nc ∼ 1: The system reaches gaplessness for the 2nd sector
n0 → Nc −∆Nc

⇒ rewriting of QI (n′
k ′ ̸= 0)

2nd regime: ∆Nc ≫ 1: The system does not reach gaplessness of the
2nd sector n0 ̸→ Nc −∆Nc ⇒
2nd sector is not excited n′

k ′ = 0

In the second regime we expect inner entanglement between two sectors to
vanish. only the contribution from statistical correlations is left.



First regime ∆Nc ∼ 1

1st regime: n′
k ′ ̸= 0

Entanglement between
memory sectors

Entanglement between a0b0

and memory sectors

Sak /a′
k′

has local maximum at t ∼C−1
m and global maximum at t ∼C−3

m

Only a global maximum at t ∼C−3
m

Claim: global maximum at C−3
m is coming from the statistical correlations

i.e tracing out a0b0
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second regime ∆Nc ≫ 1

2nd regime: n′
k ′ = 0

Entanglement between
memory sectors

Entanglement between a0b0

and memory sectors

only classical correlations contribution is left in Sak /a′
k′⇒ both curves are the same up to a scaling factor

for t ∼C−1
m , Sab/mem ≈ 0

Conclusion: For time scales t ∼C−1
m , ρmem is almost pure even after

tracing out a0b0



Effect of the memory burden on the inner entanglement

The one-particle entropy S1 is then a reliable measure for inner entanglement
for t ∼C−1

m

Effect of memory burden on the inner entanglement:

Conclusion: As the memory burden strength decreases, the memory modes
take less time to fully entangle
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Summary and outlook

Increasing the nonlinearity of the interaction decreases the strength of
the memory burden
Soft/hard modes entanglement takes time order of magnitude higher
than the inner entanglement. Since Cm ∼ 1

N , this difference in
timescales becomes more dramatic for large N
The stronger the memory burden effect the longer takes the system to
fully entangle

extend the model to include species and investigate their effect
Similarities with De Sitter case: Applications in inflationary cosmology:
t Smax provides an internal quantum clock⇒ gives an upper bound on
the graceful exist from De Sitter(end of inflation)[G.Dvali S.Zell
M.Michel L.Eisemann ’18]
⇒ investigate how bound changes due to memory burden



Summary and outlook

Increasing the nonlinearity of the interaction decreases the strength of
the memory burden
Soft/hard modes entanglement takes time order of magnitude higher
than the inner entanglement. Since Cm ∼ 1

N , this difference in
timescales becomes more dramatic for large N
The stronger the memory burden effect the longer takes the system to
fully entangle
extend the model to include species and investigate their effect
Similarities with De Sitter case: Applications in inflationary cosmology:
t Smax provides an internal quantum clock⇒ gives an upper bound on
the graceful exist from De Sitter(end of inflation)[G.Dvali S.Zell
M.Michel L.Eisemann ’18]
⇒ investigate how bound changes due to memory burden



Thank you
for your attention



Backup slides



Numerical parameters

Values of the parameters are motivated by the quantum N-portrait:

Nc = 20, K = K ′ = 4, ϵ0 = R−1
S = 1, ϵ= ϵ0

p
K

(∼ 1p
GN

)
C0 =Cm = 0.1∣∣ f1

∣∣, ∣∣ f2
∣∣, ∣∣ f3

∣∣ ∈ [0.5,1]

∆Nc ∈ [0, Nc ]

The initial state has Nm = K
2 occupied memory modes.

Nm =
K∑

k=1
n̂k +

K ′∑
k ′=1

n̂k ′ = 2



Bounds on Couplings

The coupling must be ∼ 1
Nc

so that gaplessness is not spoiled
At gaplessness:

Ĥ ⊃
( âk âl

âk 0 ∼ 1
Nc

âl ∼ 1
Nc

0

)
One can diagonlize the Hamiltonian via Bogolyubov transformation[G.Dvali,
M.Panchenko ’16] and the memory modes acquire an effective gap. This
effective gap is 1

Nc
suppressed.

It has been shown in [G.Dvali S.Zell M.Michel L.Eisemann ’21] that (using
our numerical values):

Cm ≤ 1
2

rewriting of information from 1st to 2nd sector happens at the ideal
value Cm = 0.1



Consistency check: Page’s time

Page’s time: maximal entanglement of B.H(â0 & {ak , a′
k ′}) and outgoing

radiation(b̂0) at half decay.

tSmax = thalf = tPage ⇒ consistent with semiclassical picture
N.b: This does not mean that we can retrieve information after half decay
since the information is controlled exclusively by the memory modes



3rd regime: ∆Nc = 0
For the regime where both sectors are gapless at the same critical value:
Nc = N ′

c . Analytic expression for n0(t ):

n0(t ) ∼ 4C 2
0

4C 2
0 +ϵ2 (

∑
nk+∑

n′
k′ )

2

Nc

sin2
(√

4C 2
0 +ϵ2 (

∑
nk+∑

n′
k′ )

2

Nc

2
.t

)
⇒ No entanglement between soft and memory modes
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