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Axion Electrodynamics

Consider a periodic scalar field coupled to U(1) gauge field

LAx =
1
2da ∧ ⋆da+ 1

2g2 F ∧ ⋆F− k
8π2faF ∧ F (1)

Axion field satisfies a ∼ a+ 2πf.
Axion famously has a U(1) shift symmetry that is by the instantons of
gauge theory broken down to Zk.

Our goal today is to understand symmetries of this model and to see
that shift symmetry is broken down to Q/Z noninvertible symmetry.

2



What is a Symmetry in Quantum Field Theory?

Prototipical example: U(1) global symmetry
Noether theorem:
Conserved current d ⋆ j = 0→ Conserved charge Q(Σd−1) =

∫
Σd−1

⋆j
Relativity: [Q, Tµν ] = 0 =⇒ does not care about orientation.
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What is a Symmetry in Quantum Field Theory

Modern viewpoint:
Symmetry is generated by Topological Operator

Ug=eiα(Σd−1) = eiα
∫
Σd−1

⋆j (2)

Easy to generalize: Relax some of these properties!
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p-form Symmetries

Generator of symmetry lives on a codimension-(p+1) submanifold.
U(1) p-form symmetry: d ⋆ Jp+1 = 0 Ug=eiα(Σd−p−1) = eiα

∫
Σd−p−1

⋆jp+1

General properties:
Acts by linking on operators supported on p-dimensional
Has to be Abelian
Can be gauged, leading to p-form gauge theory
Can be spontaneously broken
Can be anomalous

5



p-form gauge theory

Consider a pure U(1) p-form gauge field in d dimensions

S =
1
2

∫
Md

F(p+1) ∧ ⋆F(p+1) (3)

Where F(p+1) = dA(p) for A(p) p-form gauge field (For p=0 axion).

It has two conserved currents:
EOM: d ⋆ F(p+1) = 0→ Jp+1e = F(p+1) Electric p+1-form symmetry
Bianchi Identity: dF(p+1) = 0→ Jd−p−1m = 1

2π ⋆ F(d−p−1) Magnetic
d-p-1-form symmetry.

Charged operators under these symmetries are Willson and ’t Hooft
surfaces.
W(Σp) = ei

∫
Σp
A(p)

H(Σd−p−2) = ei
∫
Σd−p−2

Ã(d−p−2)
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Symmetries of Axion Electrodynamics

Consider axion electrodynamics without interaction:

L =
1
2da ∧ ⋆da+ 1

2g2 F ∧ ⋆F (4)

It has four conserved currents

⋆j1 = f ⋆ da ⋆ j2e =
1
g2 ⋆ F ⋆ j2m =

1
2π F ⋆ j3 = 1

2πfda (5)

So the complete symmetry of this system is

U(1)(0) × U(1)(1)e × U(1)(1)m × U(1)(2) (6)
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Symmetries of Axion Electrodynamics

With the interaction term Lint = − k
8π2faF ∧ F

equations of motion give

d ⋆ j1 = k
8π2 F ∧ F d ⋆ j2e = − k

4π2fd(aF) (7)

=⇒ U(0)
g=eiα(Σ3) = eiα

∫
Σ3

⋆j1 and U(1),e
g=eiα(Σ2) = eiα

∫
Σ2

⋆j2e are not
topological operators.
Consider modifed operators:

Ũ(0)
g=eiα(Σ3) = eiα

∫
Σ3

(⋆j1− k
8π2

A∧F) Ũ(1,e)
g=eiα(Σ3) = eiα

∫
Σ3

(⋆j2e+ k
4π2 f

aF) (8)

These are now topological operators but, are not well defined, except
for α ∈ Zk. =⇒ symmetry broken down to

Z(0)
k × Z(1,e)

k × U(1)(1)m × U(1)(2) (9)

For k = 1 shift and electric 1-form symmetries completely broken.
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More about Shift Symmetry

Can we modify U(1)(0)g (Σ3) to obtain a well defined topological
operator?
Consider a new current defined as

⋆̃j1 = ⋆j1 − 1
8π2 A ∧ dA (10)

This satisfies the conservation equation d ⋆ j̃1 = 0, but it is not a
gauge invariant operator.
Interestingly, we can find a modification for α ∈ 2πQ. Consider, first
α = 2π/N. The gauge non-invariant term is − i

4πN
∮
Σ3
A ∧ dA. There is

a trick to make this gauge invariant: A gauge invariant action for the
fractional quantum Hall state is

i
∮
Σ3

(
N
4πa ∧ da+

1
2πa ∧ dA) (11)

Where a(1) is a dynamical U(1) gauge field on Σ3. It is a U(1)N
Chern-Simons theory coupled to dA.
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Noninvertible shift symmetry

We define a new operator in the theory:

D 1
N
(Σ3) =

∫
Da(1)|Σ3exp(i

∮
Σ3

(
2π
N ⋆ j1 + N

4πa
(1) ∧ da(1) + 1

2πa
(1) ∧ dA))

(12)

This operator acts as a shift symmetry on axion field for 2π/N. It is
gauge invariant and topological.
As a well defined topological operator, it should be wieved as a
generalized global symmetry. Interestingly, it is not a usual
group-like symmetry. That is, this operator doesn’t follow the group
multiplication law under parallel fusions. In particular, D 1

N
is not a

unitary operator and it does not have an inverse operator (D 1
N
)−1.

For this reason, D 1
N
is a non-invertible symmetry.
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Noninvertible shift symmetry

We can generilize this construction to any rational angle α = 2πp
N .

The new topological operator D p
N
associated with the shift for 2πp/N

is defined as

D p
N
(Σ3) = exp(i

∮
Σ3

(
2πip
N ⋆ jA +AN,p[dA/N]) (13)

where AN,p[B(2)] is a TQFT with a Z(1)
N one-form symmetry with its

t’Hooft anomaly labeled by p and coupled to a Z(1)
N background

two-form gauge field B(2).
An example of a fusion rule is:

D 1
N
×D 1

N
= AN,2D 2

N
(14)

So, we see that fusion coefficients are actually not ordinary numbers
but TQFTs.
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More about electric 1-form symmetry

Now we use the similar idea and try to modify U(1)(1),eg (Σ2) to obtain
a well defined topological operator. Start with a new current

⋆̃j2e = ⋆j2e +
1

4π2faF (15)

The second term is again not well defined operator when multiplied
with arbitrary phase.
To cure this for α = 2π

N consider a well defined action:

i
∮
Σ2

(
N
2π c

(1) ∧ dϕ(0) − 1
2πϕ

(0)F(2) − 1
2πf c

(1) ∧ da(0)) (16)

where c(1) and ϕ(0) are dynamical U(1) gauge field and periodic
scalar on Σ2. It is a 2d− ZN gauge theory coupled to da(0) and dA(1).
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Noninvertible 1-form Symmetry

Now we define a new topological operator in the theory:

C 1
N
(Σ2) =

∫
Dϕ(0)Dc(1)|Σ2expi

∮
Σ2

(
2π
N ⋆j2e+

N
2π c

(1)∧dϕ(0)− 1
2πϕ

(0)F(2)− 1
2πf c

(1)∧da(0))

(17)
This could be generalized for any rational angle α = 2πp

N . The new
topological operator C p

N
implementing 1-form electrical symmetry is

defined as:

C p
N
(Σ2) = expi

∮
Σ2

(
2π
N ⋆ j2e + BN,p[da/N,dA/N]) (18)

where BN,p[B(1), C(2)] is a 2d TQFT with a Z(0)
N × Z(1)

N symmetry with
mixed t’Hooft anomaly labeled by p and coupled to a Z(0)

N
background 1-form gauge field B(1) and a Z(1)

N background 2-form
gauge field C(2).
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Alternative construction of a noninvertible shift symmetry

Our theory has a magnetic one-form global symmetry U(1)(1)m whose
Noether current is a two-form j2m = 1

2π ⋆ F. The background gauge
field is a 2-form field B(2) coupled by iB(2) ∧ ⋆j2m = i

2πB
(2) ∧ F.

If we want to gauge a discrete subgroup Z(1)
N of U(1)(1)m we can write a

Lagrangian

LAx[a,A] +
i
2πb

(2) ∧ F+ iN
2πb

(2) ∧ dc(1) + iNk
4π b

(2) ∧ b(2) (19)

Idea is now to gauge only in the half of space-time and modify a bit
to end with the same theory with the noninvertibe defect in bewteen.
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Alternative construction of a noninvertible shift symmetry

We gauge theory in half of space-time (i.e. x ≥ 0). Next, we add to
the total Lagrangian the following:

2πip
N

∮
x=0

⋆j1 + ip
4πN

∫
x≥0

F ∧ F (20)

which is trivial.
Composing the discrete gauging and the axion shift in the x ≥ 0
region, the total Lagrangian becomes∫

x<0
LAx[a,A] +

2πpi
N

∮
x=0

⋆j1+

∫
x≥0(LAx[a,A] +

ip
4πNF∧ F+

i
2πb

(2) ∧ F+ iN
2πb

(2) ∧dc(1) + iNk
4π b

(2) ∧b(2))(21)
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Alternative construction of a noninvertible shift symmetry

The bulk Lagrangians in the x < 0 and x > 0 regions are both the
original theory Lagrangian, but the discrete gauging leaves behind
exactly the defect D p

N
at x = 0.

We can use this to compute fusion of defects to see that it is realy
noninvertible:

We can find that
D 1

N
×D†

1
N
= C ̸= 1 (22)
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Higher gauging

The notion of gauging a global symmetry within lower dimensional
submanifolds of spacetime is called higher gauging. Higher gauging
of a discrete symmetry produces a noninvertible topological defect.
Gauging a q-form symmetry on codimension-p closely resembles the
gauging of a (q − p)-form symmetry.
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Alternative construction of a noninvertible 1-form symmetry

To construct topological defect on a codimension 2-surface Σ2 idea
is to extend it to a codimension one hypersurface Σ3 s.t. Σ2 = ∂Σ3

and use higher gauging of discrete subgroups of U(1)(2) and U(1)(1)m .

We need to sum over 1-form Z(1)
N background gauge field b(1),

coupled to the magnetic symmetry, and a 2-form Z(2)
N background

gauge field c(2), coupled to the magnetic symmetry along Σ3.
In total we have to add to the theory:∫
Σ3

N
2πb

(1)∧de(1)+ N
2π c

(2)∧df(1)+ iNk4π b
(1)∧c(2)+ i

2πb
(1)∧F(2)+ i

2π c
(2)∧da(0)

(23)
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What I woud like to understand

Symmetry TFT in d+1 dimensions describing symmetries of quantum
field theory in d dimensions.

Can we capture these noninvertible symmetries of Axion
Electrodynamics in this framework?
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Some thoughts about Noninvertible symmetries

• Noninvertible topological operators are ubiquitous in 2d CFTs
• Can maybe give new selection rules, or naturalness
• Can be gauged sometimes
• Existence can give dynamical applications
• Implications for Swampland

20


