Integrability for ABJM theory: Quantum Spectral Curve and Regge trajectories

Valerio Tripodi

Università degli Studi di Torino

Regge trajectories

Regge theory: study of the dependence of the spectrum on the spin of exchanged particles

Regge theory in QFT

Scattering amplitudes: $T(s,t) \sim s^{j(t)}, s \to \infty, t$ fixed

Conformal Regge theory

Mellin amplitudes=integral transform of the n-point correlators in CFT

$\mathcal{N} = 4$ SYM vs ABJM theory

- Supersymmetry + Conformal symmetry \Rightarrow Superconformal gauge theory
- These theories appear in AdS/CFT duality: string theories \Leftrightarrow gauge theories

$\mathcal{N} = 4$ Super Yang-Mills	ABJM theory
4d Yang-Mills: <i>SU(N)</i>	3d Chern-Simons: $U(N) \times U(M)$
Conformal group: $SO(2,4) \simeq SU(2,2)$	Conformal group: $SO(2,3) \simeq Sp(4)$
Supercharges $\mathcal{N} = 4$	Supercharges $\mathcal{N} = 6$
Supergroup: <i>PSU</i> (2,2 4)	Supergroup: <i>OSp</i> (6 4)
Regge trajectories for generic spin: understood	Regge trajectories for generic spin: NOT understood

Spectrum of a CFT

- ≻ Conformal dimension Δ of an operator $O(x) \rightarrow$ eigenvalue of dilatation generator acting on O(x)
- \succ Spectral problem \rightarrow compute the *conformal dimensions* of the operators in the theory

2-point correlator

$$\langle \mathcal{O}(x)\bar{\mathcal{O}}(y)\rangle \approx \frac{1}{|x-y|^{2\Delta}} \stackrel{\gamma < <\Delta_{0}}{\to} \frac{1}{|x-y|^{2\Delta_{0}}} (1-\gamma \ln(\Lambda^{2}|x-y|^{2}))$$

$$Bare dimension \Delta_{0} \text{ (tree level)}$$

Anomalous dimension γ : quantum corrections to Δ_0

Single trace operators

> Single trace operators: fields in adjoint representation \rightarrow trace to build *gauge invariant* quantities

$$\mathcal{O}_{i_1,\ldots,i_L}(x) \propto \operatorname{Tr}(\phi_{i_1}(x)\cdots\phi_{i_L}(x))$$

> Loop corrections mix the flavour indices of the fields inside the trace

> Anomalous dimensions can be seen as the **spectrum of these mixing operators**

$$\left\langle O_{i_1\dots i_L}(x)\bar{O}^{j_1\dots j_L}(y)\right\rangle = \frac{1}{|x-y|^{2L}} \left(1 - \frac{\lambda}{8\pi^2} \sum_{l=1}^{L} (1 - \hat{P}_{l,l+1})\right) \left(\delta_{i_1}^{j_1} \dots \delta_{i_L}^{j_L} + \text{cycles}\right)$$

Anomalous dimension

Spin chain models

GAUGE THEORY

SPIN CHAIN MODEL

fields in the trace

operator $Tr(\phi_{i_1} \dots \phi_{i_L})$

cyclicity of the trace

mixing operators

anomalous dimension

sites in the spin chain

states in $\mathcal{H}_1 \otimes ... \otimes \mathcal{H}_L$

periodic conditions (closed chain)

integrable hamiltonian on the spin chain

eigenvalues of integrable hamiltonian

Bethe ansatz equations

Bethe ansatz for the eigenstates

Integrable Scattering Matrix:

• Unitarity
$$\rightarrow SS^{\dagger} = 1$$

Solving the spectrum for closed chains

Quantum Spectral Curve

- Set of auxiliary functions dependent on a spectral parameter *u* ∈ C → generalization of the Bethe ansatz equations
- Algebraic constraints → Non-linear system of finite difference functional equations

$$Q_{1}(u) = \prod_{i=1}^{N_{1}} (u - u_{i}), \quad \frac{Q_{1}^{[++]}(u_{i})}{Q_{1}^{[--]}(u_{i})} = \left(\frac{u_{i} + \frac{i}{2}}{u_{i} - \frac{i}{2}}\right)^{L} \implies \text{Bethe ansatz equations}$$

$$\text{Spin chain}$$

$$\text{Vs}$$

$$\text{Polynomial Q-functions}$$

$$\text{Vs}$$

$$\text{Non-trivial monodromy}$$

Gluing conditions

Analytic and algebraic properties

 +

 Ansatz on asymptotic behaviour

- 1) Symmetries of the QSC equations: analytic continuation, conjugation and parity $(u \rightarrow -u)$
- 2) Asymptotic behaviour \leftrightarrow charges like conformal dimension and spin
 - **Power-like** asymptotics \longrightarrow Spin is **quantized**: $S \in \mathbb{Z}$
 - **Exponential behaviour** \longrightarrow Allows to study $\Delta(S)$ for **CONTINUOUS SPIN**

New results

Analytic results

- ✓ Study of the parity symmetry for the QSC equations for ABJM theory → new constraints on the gluing conditions (expressed as a matrix equation)
- ✓ New ansatz for the asymptotic behaviour → search for a relation between conformal dimension and spin as a continuous parameter

Numerical studies:

- > Numerical implementation of the ansatz on the gluing constraints
- > Work in progress...numerical evaluation of the Regge trajectory at non-integer values of the spin

New results

Recently with the doctoral student Nicolò Brizio

Numerical evaluation of Regge trajectories and Q-functions at generic spin

References

- 1. Spin Chains in N = 4 Super Yang-Mills, Joseph A. Minahan
- 2. Studies on Wilson loops, correlators and localization in supersymmetric quantum field theories, Michelangelo Preti
- 3. Quantum integrability and functional equations, Dmytro Volin
- 4. A review of the AdS/CFT Quantum Spectral Curve, Fedor Levkovich-Maslyuk
- 5. Introduction to Integrability, N. Beisert
- 6. The full Quantum Spectral Curve for AdS4/CFT3, 1701.00473v4 [hep-th]
- 7. *BFKL Spectrum of N* = 4 *SYM: non-Zero Conformal Spin*, 1802.06908v4 [hep-th]
- 8. Supersymmetric Gauge Theories and the AdS/CFT Correspondence, Eric D'Hoker, Daniel Z. Freedman
- 9. Lectures on Supersymmetry, M. Bertolini
- 10. Conformal Regge Theory, V. D. Fonseca Gonçalves

QSC for ABJM

2h - 2i

2h - 3i

-2h - 2i

-2h - 3i

branch points and cuts

MASTER equation:
$$Q_{a|i}^{[+]} = P_{ab}P^{[-2]bc}Q_{c|i}^{[-3]}$$

x(u) =

Asymptotic behaviour

charges of the theory \leftrightarrow exponents in the power-like asymptotics

 $\mathcal{L}(u)$ **CONSTANT** and $S \in \mathbb{Z}$ **QUANTIZED**

Gluing conditions for continuous spin

Parity $u \rightarrow -u$

$$\mathbb{R}_{a}^{b}Q_{b|i}(-u) = Q_{a|j}(u)\Theta_{i}^{j}(u)$$

symmetry of the MASTER equation

Gluing matrix K(u)

 $\mathcal{K}(-u) = -k\mathcal{K}^{\mathsf{T}}(u)k^{-1}$

relation between $\tilde{Q}_{ij}(u) \leftrightarrow Q_{ij}(-u)$

Modified ansatz on the asymptotic behaviour

K(u) analytic, but not bounded at infinity \Rightarrow **NOT CONSTANT**

New ansatz for continuous spin

Ansatz for exact $K(u) \rightarrow$ entries are *even or odd* polynomials in X or X^{-1} :

$$\mathcal{K}_{\text{exact}}(X) = \begin{pmatrix} P_1^{(4)}(X) & P_2^{(3)}(X) & P_3^{(3)}(X) & P_4^{(4)}(X) \\ P_5^{(3)}(X) & P_6^{(2)}(X) & P_7^{(2)}(X) & P_8^{(3)}(X) \\ P_9^{(3)}(X) & P_{10}^{(2)}(X) & P_{11}^{(2)}(X) & P_{12}^{(2)}(X) \\ P_{13}^{(4)}(X) & P_{14}^{(3)}(X) & P_{15}^{(3)}(X) & P_{16}^{(4)}(X) \end{pmatrix} \qquad P^{(n)}(X) := \begin{cases} \sum_{\substack{i=-n \ i \neq \text{ven}}}^n a_i X^i, & \text{if } n \text{ even} \\ \sum_{\substack{i=-n \ i \neq \text{ven}}}^n a_i X^i, & \text{if } n \text{ odd} \end{cases}$$

Imposing the constraint on this guess and comparing the **leading order** at $u \rightarrow$ $+ \infty$ and $u \rightarrow -\infty$

conditions on the parameters of the ansatz for τ_i 's and relation $\Delta \leftrightarrow S$