2-group Symmetries in 6 dimensions

Alessandro Manta

with Dr. Markus Dierigl, in Prof. Dieter L*ü*st's group

March 5, 2023

2-group Symmetries

- Symmetries in QFT
- Higher Form Symmetries
- 2-group Symmetries
- 2-group Symmetries in 6D QFTs
- Conclusions

Symmetries in QFT

- Transformations that leave the theory invariant
- They give information about the QFT:
 - Noether
 - Ward identities
 - Anomalies

...

- Global Symmetries vs Gauge Redundancies
- Example: complex scalar $\phi \mapsto e^{i\alpha}\phi$

$$S = \int \mathrm{d}\phi \wedge \star \mathrm{d}\phi \tag{1}$$

- Symmetry structure: group, acting by unitary transformations.
- Implemented by **extended topological operators** (codim-1) *U*_g(Σ_{d-1}) wrapping **charged local operators** O_q(*x*)

$$\mathcal{O}_q(x) \mapsto g \cdot q \mathcal{O}_q(x)$$
 (2)

LMU

• Noether current is a conserved 1-form $d \star J = 0$, charge

$$Q(\Sigma_{d-1}) = \int_{\Sigma_{d-1}} \star J \tag{3}$$

Background fields A "1-forms" (locally) $(A \mapsto A + d\lambda)$

■ Continuous case: couple to Noether current ∫ A ∧ *J, e.g. complex scalar U(1) global symmetry

$$J \sim \phi^* \mathsf{d}\phi \implies \mathcal{L} \sim \phi^* D_A \phi \tag{4}$$

 Discrete case: implemented topologically (topological couplings or networks of symmetry defects)

In general: coupling to a *G*-bundle $(A : X \rightarrow BG)$

Anomalies

- Non-invariance of the partition function.
- Measured (perturbatively) by $(\frac{d}{2} + 1)$ -gon loop diagrams, e.g. ABJ

- Measured (perturbatively) by anomaly polynomial I^{d+2}, (d+2)-form constructed from characteristic classes, e.g. ABJ in 4d κ_{(GAUGE)²GLOBAL}F_{gauge} ∧ F_{gauge} ∧ F_{global}
- Non-perturbative treatment is more subtle.

Higher Form Symmetries

p-form symmetries charge **extended** *p*-dimensional operators, implemented by unitary codim-(*p* + 1) topological operators.

• Noether current is a (p+1) differential form, charge

$$Q(\Sigma_{d-p-1}) = \int_{\Sigma_{(d-p-1)}} \star J \tag{5}$$

- For $p \ge 1$ the underlying group is **abelian**
- Background gauge fields B are (p + 1)-forms, gauge invariance B^(p+1) → B^(p+1) + dΛ^(p)
 - Continuous case: $\int B \wedge \star J$
 - Discrete case: implemented by network of symmetry defects

In general couple to higher generalization of bundles $(B: X \rightarrow B^p G)$

Higher Form Symmetries: examples

• 4d Maxwell: electric U(1) symmetry $A \mapsto A + \alpha$, $d\alpha = 0$

$$S = \int \frac{1}{2e^2} \mathrm{d}A \wedge \star \mathrm{d}A \tag{6}$$

with current $J_e = \frac{2}{e^2}F$ charging Wilson Lines $W_q(\ell)$; magnetic symmetry charging 't Hooft lines $H_q(\ell)$, with current $J_m = \frac{1}{2\pi} \star F$.

Coupling to background

$$S = \int \frac{1}{2e^2} (\mathrm{d}A - B_e) \wedge \star (\mathrm{d}A - B) + B_m \wedge F \qquad (7)$$

Breaking gives interpretation to photons as Goldstone modes

Higher Form Symmetries: examples

• Center Symmetry YM SU(N), shift A by flat \mathbb{Z}_N connection

$$S = -\int \frac{1}{2g^2} \operatorname{tr}(F \wedge \star F) \tag{8}$$

Charges Wilson lines $W_n(\ell)$.

- Center symmetry $\mathcal{Z}(G) \iff$ Global form of $G = \frac{SU(N)}{Z}$, with $Z \subset \mathbb{Z}_N$, and allowed electric/magnetic lines \iff choice of θ -angle
- Coupling to background

$$"S = -\int \frac{1}{2g^2} \operatorname{tr}((F - B_Z) \wedge \star (F - B_Z))" \qquad (9)$$

- Consider a QFT with a 0-form symmetry *G* and 1-form symmetry *A*.
- G and A can mix in a non-trivial way $G^{(0)} \times_{\hat{\kappa}} \mathcal{A}^{(1)}$:
 - Background gauge transformations: $A^{(1)} \mapsto A^{(1)} + d\lambda^{(0)}$, $B^{(2)} \mapsto B^{(2)} + d\Lambda^{(1)} + \frac{\hat{\kappa}}{2\pi}\lambda^{(0)}dA^{(1)}$
 - 2-group non-conservation (*fusion*):

$$d \star J_B = 0, \quad d \star j_A = \frac{\hat{\kappa}}{2\pi} F_A \wedge \star J_B \tag{10}$$

Ward-identities

2-group defects

Modified fusion of defects

■ Measured by topological data β ∈ H³_ρ(BG, A) (related to κ̂), ρ: BG → Aut(A)

Applications

- Classify extended objects
- Selection rules on amplitudes
- Symmetry breaking and Symmetry enhancement in RG flow
- Gauging \sim discrete θ angles
- Characterizing phases:
 - Spontaneously broken discrete 1-form symmetry ⇒ deconfined lines
 - \blacksquare unbroken \implies confinement of charged line operators
- Gauging \implies dualities

Anomalies

Example: 2-group from Mixed Anomaly

 In a gauge theory with gauge group U(1) (gauge field c) and a global U(1) 0-form symmetry (background A), with mixed anomaly polynomial (4d)

$$I_{mixed}^{6} = \frac{k_{mixed}}{(2\pi)^{3}3!} F_A \wedge F_A \wedge f_c$$
(11)

Resulting in 4d anomaly (measuring charge non-conservation)

$$\mathcal{A} = \frac{ik_{mixed}}{8\pi^2} \int F_A \wedge f_c \tag{12}$$

■ **Operator valued** ⇒ broken theory?

Example: 2-group from Mixed Anomaly

 U(1) gauge theory has U(1) magnetic 1-form symmetry with coupling

$$\int B \wedge \star J_m = \frac{i}{2\pi} \int B \wedge f_c \tag{13}$$

- Fixes anomaly if $B \mapsto B + \frac{\hat{\kappa}}{2\pi} \lambda_A F_A$ with $\hat{\kappa} = -\frac{k_{mixed}}{2}$
- We have a 2-group $U(1)_{mixed}^{(0)} \times_{\hat{\kappa}} U(1)_m^{(1)}$. Non-trivial flavor background $\implies B_m$ background **cannot** be flat.
- This is easily generalized to $U(1)_{gauge} \times G_{flavor}$ and $U(1)_{gauge} \times \mathcal{P}$ mixed anomalies.
- Truncating flavor anomalies via GS counterterms

$$in \int B \wedge F_A$$
 (14)

- Similar in 6d: from $I^8_{A^2c^2} \sim k \operatorname{tr}(F_A \wedge F_A) \wedge \operatorname{tr}(f_c \wedge f_c)$
- $J^{(2)} \sim \star (f_c \wedge f_c)$ generates $U(1)^{(1)}$ instanton 1-form symmetry
- Gauge theory is well defined if $B_{inst}^{(2)}$ undergoes 2-group shift $B \mapsto B + \frac{\hat{\kappa}}{2\pi} \operatorname{tr}(\lambda dA)$
- Similar for local Lorentz invariance.
- Truncating flavor anomalies via GS counterterms (more counterterms)

Bockstein 2-groups

• Non-trivial topology for flavor group $F \implies$ Bockstein 2-groups

•
$$F = \mathcal{F}_{\mathbb{Z}}, \ \Gamma^{(1)} \subset Z(G), \ \mathcal{E}$$

 $1 \to \Gamma^{(1)} \to \mathcal{E} \to \mathbb{Z} \to 1$ (15)
 $L_1 \longrightarrow Q_{21} \qquad L_2 \implies L_1 \sim L_2$
 $R_1 \longrightarrow R_2 \implies R_1 \sim R_2$
 $(L_1, R_1) \longrightarrow Q_{21} \in R_2 \otimes R_1^*$ $(L_2, R_2) \implies (L_1, R_1) \sim (L_2, R_2)$

• 2-group measured by $\beta = Bock(w_2)$

2-groups in 6D QFTs

Continuous 2-groups:

- SCFTs: no continuous 1-form symmetries \implies no continuous 2-groups \implies mixed gauge/flavor anomalies vanish
- LSTs: instanton U(1) 1-form symmetry often gives 2-groups with flavors, R and Poincaré: invariants under T-duality. Truncates big parts of 't Hooft anomalies.
- Bockstein 2-groups:
 - SCFTs: exhibit Bockstein 2-groups of this type (*mainly* in "exotic theories").
 - LSTs: do **not** exhibit Bockstein 2-groups.
 - Anomaly computation is more subtle (discrete structures).
- Defect analysis via inflow.

- More general 2-group structures.
- Higher groups.
- Geometric engineering of these symmetries from M/F-theory.
- 2-group anomaly inflow, symmetry TFTs and global anomalies.
- Swampland conjectures.
- Non-invertible symmetries.
- Particle Physics applications.

Thank you for your attention.

(Weak) 2-category with 1-object:

- 1-morphisms form a group G
- 2-morphisms form a group with a crossed module structure. 2-morphisms $a: 1 \implies 1 \ (1 \in G)$ form an abelian group \mathcal{A}
- $\rho: G \to Aut(\mathcal{A}) \sim \text{conjugation}.$
- $\beta \in H^3_{\rho}(BG, \mathcal{A})$ associator.
- Equivalent definitions: weak monoidal categories, crossed module, a group object in *Cat*, a category object in *Grp*

Appendix 2: Higher Symmetry and Confine LMU

- A spontaneously broken discrete 1-form symmetry leads to deconfined line defects (i.e. defects obeying a perimeter law) at long distances.
- Unbroken 1-form symmetry implies confinement of the line operators charged under it.
- A discrete broken symmetry leads to a TQFT in the IR long range topological order