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Inflationary paradigm
Inflationary era in the early Universe: Quasi-exponential expansion of the
Universe very shortly after Big Bang.

Motivation:

» Explains approximate spatial flatness and isotropy of the Universe we
see today.

» Explains approximate isotropy of the CMB and offers a source for its
temperature fluctuations as well.

» Offers a mechanism for the seeding of large-scale structure.

Source: NASA/WMAP Science Team
Source: Cherenkov Telescope Array
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One of the simplest inflationary models: single-field, slow-roll inflation.
Quasi-exponential inflation driven by one scalar field ®, the inflaton

q)(tvf) = ¢O(t) + ¢(tvf) s

.

vev quantum
fluctuation

with a very flat potential V' (®). The fluctuation ¢ is well-described as a
massless scalar field living in the inflationary spacetime. Background
geometry is also allowed to fluctuate, have metric perturbations ;;.
Main observables of interest are cosmological correlators of inflaton and
metric fluctuations,

((t, Z1)-- 0t T )Vij (t Trg1) - Yan (E, Tn))

evaluated at equal and late time ¢, a long time after inflation ended (i.e.
today).
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Why de Sitter?

To test inflationary models it is important to compute correlators
including quantum corrections (loops). This is very challenging, it would
be desirable to develop computational methods in a simplified setting.

A good approximation to the inflationary background spacetime is de
Sitter (dS) spacetime.

» Spatially flat, exponentially expanding:
ds? = dt? — a(t)?di?, a(t) = e,

with H = const. the Hubble parameter. Observer sees a
cosmological horizon of radius r = 1/H.
» dS is a maximally symmetric solution of the Einstein field equations,
which simplifies computations considerably.
Fluctuation ¢ modeled by a real, minimally coupled, massless scalar field
in dS with a quartic self-interaction ~ ¢*. Can further simplify model by
neglecting 7;; and consider exact dS, observables are now just

(p(t, @1)...0(t, Zn)) -

Real, minimally coupled, massless scalar field in dS is a good testing
ground to start to understand the dynamics of quantum fields in an
inflationary spacetime.
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Already this simplified model presents significant challenges. Would like
to use theory to compute an observable O(t) perturbatively in powers of
the scalar coupling g < 1,

0 =3 g"0u(t),
n=0

expansion can be represented in terms of Feynman diagrams, e.g.

(Ot D)B(t, 7)) = PO, +%+...

> Massless scalar propagator is infrared-divergent = cannot construct
perturbative expansion:

d*k -
N/F—H)o, k=1k|.

= Perturbation theory is ill-defined, need to go beyond it to obtain
physically sensible results.
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» IR-regularized perturbation theory (e.g. with small mass m? < H?
or IR-cutoff) develops secular logarithms:

’ ~ log(ef') ~ Ht.
IR-reg.

Even for weak coupling g the perturbative expansion of an
observable O breaks down after sufficiently long time, e.g.

O(t>1/H)= ZOng log Hty

truncation of the series at finite n in meaningless.
= In both cases, perturbation theory fails due to field modes with
—— < 1.
a(t)H

The IR-structure of this theory appears to be non-trivial and needs to be
understood in a framework that goes beyond fixed-order perturbation
theory.
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Stochastic Inflation

Prime example: Stochastic Inflation was the first approach to successfully
capture the leading IR-dynamics of very light and massless scalar fields in
dS, pioneered by [Starobinsky 1986; Starobinsky, Yokoyama 1994].

Idea: split the field up in a large- and small-momentum part,

¢(ta E) = d_)(tv E) + 5¢(ta E) ;00K Q_S,
k<a(t)H k>a(t)H

and treat ¢ as a classical, stochastic random variable. Its properties are
described by a probability distribution function (PDF) p(¢,¢), which
satisfies a Fokker-Planck equation,

0 1 0 H? 92
L V@] + 59
ot 3H Oy 812 Oy

class_lcgl stochastic
drift “hoise”

The stochastic “noise” is generated by the short-wavelenegth modes §¢.
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Stochastic Inflation
The PDF determines all one-point correlation functions of ¢ via

o0

(¢"(t, 7)) :/ dp ©"p(t, ¢) .

—0o0
The Fokker-Planck equation is simple enough for p to be computed

analytically or numerically without perturbative approximations. With the
potential

V(9) = 56" (m=0)
under the assumption of an equilibrium solution, d;p = 0, we find
30(3) H?
(5 Ve

(¢*(x)) =

> Well-defined and finite.
» Non-perturbative result, non-analytic in g.

= Interpretation: the massless, interacting field develops a dynamical
mass

m(21yn ~ H2\/§a
non-perturbatively. The IR-divergence self-regularizes.
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Stochastic Inflation

» Succeeds in capturing the leading dynamics of the IR-degrees of
freedom, by treating them beyond perturbation theory it yields
well-defined, finite results.

» However, it is not the end of the story: the framework does not offer
the possibility to systematically include subleading corrections
(neglects all cross-terms of the form ¢d¢). Was extended beyond
LO only recently [Gorbenko, Senatore 2019; Mirbabayi 2020; Cohen, Green,
Premkumar, Ridgway 2021].

» The stochastic approach is an example of an effective theory: focus
is on the description of the relevant degrees of freedom ¢. The
short-wavelength part ¢ does not appear in the equation of motion,
its leading effect is captured by the stochastic noise term in the
Fokker-Planck equation.

= This motivates the construction of an effective framework in the
context of QFT to understand how to systematically incorporate
subleading corrections.
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EFT treatment of infrared sector
Want an effective description of field modes with

<1.

a(t)H

What does it have to do?
» EFT needs to reproduce the full-theory correlators in the limit of
interest, while also simplifying the computation.
» Exhibit the property of “factorization” of hard and soft physics,
schematically:

i
—ki/(al(ltr)lH)*Ow

This should then isolate the origin of IR-divergences and secular
terms.
» Should enable us to reorganize the ill-defined perturbative expansion
of observables into a modified, well-defined one.
Breakthrough in this direction: Soft de Sitter Effective Theory (SdSET)
[Cohen, Green 2020; Cohen, Green, Premkumar, Ridgway 2021; Cohen, Green,
Premkumar 2021].

(t, k1) d(t, kn)) = Chara X (@(t, k1) ..ot kn) ) EFT -

10



Structure of SASET
The SASET is an EFT built to compute the late-time/small-wavenumber
limit of equal-time correlation functions,

li k1)... k ~ky o~~~k
7ki/(al(ItI)1H)—)O<¢(t’ kl) ¢(t7 kn)> ) kl k2 kn
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Structure of SASET
The SASET is an EFT built to compute the late-time/small-wavenumber
limit of equal-time correlation functions,

I Byt iy oo
_ki/(al(gl)lH)_)()(sﬁ(t,kl) Dt kn)), k1~ ke k

b
ki/(a(H) > 1 ki/(a(t)H) < 1

Time of horizon crossing ty defined by

11
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Structure of SASET

Full-theory field is split up as

Ot %) = H| o1 (1F) + [a(t) H] o ()] +ouv(t. F).

EFT fields, k/A(t)<1

k/A(t)>1
where for fixed t the quantity
Alt) =a(t)H

plays the role of the UV-cutoff for k of the EFT.

The EFT correlators are organized in terms of a small power-counting
parameter A, defined parametrically by
ks
A(t)

effective fields have a definite power-counting associated to them:

)\N

<1,

oy~ A, oo~ AT

¢uv is not described as a dynamical field in the EFT (it is “integrated
out”). Its effects are captured by Wilson coefficients and non-Gaussian
initial conditions (IC's).
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Structure of SASET

Physical origin of the IC’s:

ki/A(t) > 1 ki/A(t) <1

subhorizon evolution SASET-regime

» SASET describes the time evolution from ¢z on, field modes already
had time to evolve and interact = leads to non-Gaussian correlations
at ty, which need to be specified as input for the EFT via the IC's.
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Structure of SASET

Physical origin of the Wilson coefficients:

ki/A(t) > 1 ki/A(t) <1

subhorizon evolution SASET-regime

» While the fields evolve_in time after tg, they can still interact via
modes with momenta [ which satisfy [/A(¢) > 1.
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Structure of SASET

Physical origin of the Wilson coefficients:

Ei/A(t) > 1 ki/A(t) <1
subhorizon evolution SASET-regime

» While the fields evolve in time after ¢y, they can still interact via
modes with momenta [ which satisfy I/A(t) > 1. These
contributions cannot be described by the dynamical d.o.f. of the
EFT and are reproduced by the Wilson coefficients.

14
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In a bit more detail: SASET is defined at leading power in A by the action
SsaseT = Skin + S1C + Sint ,

where (schematically)

SIC = Z [H/d?’xl] En<fl, ...7fn)(p+(tH,fl> Ce (p+<tH7.’1_fn),
n=2 -i=1
Sint = — /d4$ Z Conga Tt B) o (L, ) .
n=1

» The =, are time-independent, non-local functions which encode the
non-Gaussian IC's, they are treated as non-local “vertices” in
computations. The |C-sector of the action is localized at the time of
horizon-crossing t 7.

» The Wilson coefficients ¢, are local and play the role of effective
couplings.

Both the =,, and ¢,, are determined by matching computations: compute
quantity in the full theory, compute analogous quantity in the EFT, the
difference determines =,, and c¢,.
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non-trivial consistency check of the EFT.

Systematic matching at loop level of massless ¢*-theory onto SASET at

leading power in A not yet done = starting point of our work.

First steps:

> Since in dS there is no consensus on a good regulator for divergent

loop integrals, need to define regularization and renormalization
schemes both in the full theory and EFT. Introduced an analytic
regulator via

00= [ e () o0

to regularize both UV- and IR-divergences, analogously for EFT
fields.

» Opportunity to apply tools from flat-space computations to
cosmological correlators. In particular: applied the method of
regions [Beneke, Smirnov 1997] to simplify computation of correlators in
the late-time limit and elucidate the origin of the contributions to
the Z,, and ¢,,.
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Matching massless ¢*-theory onto SASET

Start with tree-level matching: match tree-level four-point function onto

SdSET
¢ ¢ oy P
>+ X
) ) P+ T P+
E4,c4
= determine Z4, c4.

Now can proceed to one-loop matching computations: match one-loop
two-point function,

¢J—¢+¢—o—¢i<ﬂ+J—@++ Yt —o— P+

Z2,E4,C2,C1

=4, ¢4 already determined, need to be able to reproduce full result only
using Zs, co = first consistency check v'.
17



Matching massless ¢*-theory onto SASET

Finally, matching of composite-operator correlation function

(8% (t, Dp(t, k1) (L, ko))

at one-loop,

P+
10) = ¥3 < ca,E4
P+
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Finally, matching of composite-operator correlation function

(8% (t, Dp(t, k1) (L, ko))

at one-loop,

10) P+
OO
QS — Sﬁ_;'_ %64,:4

o P+

More involved computation, but it still works v". First step into
systematic understanding of operator mixing in the EFT and the
renormalization-group equations (RGEs) that control it.

Claim in [Cohen, Green 2020] that SASET reproduces the framework of
Stochastic Inflation as “dynamical RGEs" for the composite operators
(pi, used in [Cohen, Green, Premkumar, Ridgway 2021] to extend stochastic
framework to NNLO for the first time.
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Matching massless ¢*-theory onto SASET

Finally, matching of composite-operator correlation function

(8% (t, Dp(t, k1) (L, ko))

at one-loop,

10} P+
O
QS — Sﬁ_;'_ %64,:4

é P+

More involved computation, but it still works v". First step into
systematic understanding of operator mixing in the EFT and the
renormalization-group equations (RGEs) that control it.

Claim in [Cohen, Green 2020] that SASET reproduces the framework of
Stochastic Inflation as “dynamical RGEs" for the composite operators
(pi, used in [Cohen, Green, Premkumar, Ridgway 2021] to extend stochastic
framework to NNLO for the first time.

= Would like to derive this rigorously from an RGE analysis and put the

framework on a solid QFT footing.
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Summary

» SASET appears to be the correct EFT-framework to describe the
late-time dynamics of quantum fields in de Sitter space.

» We carried out one-loop matching computations of massless
¢*-theory onto SASET as a consistency check on the framework.
This necessitated the introduction of a regularization and
renormalization scheme both for the full and effective theories.

» To simplify full-theory calculations and elucidate the origin of the
contributions to Wilson coefficients and IC's we were able to use the
method of regions.
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Outlook

A lot still to do:

» Understand operator mixing rigorously from an RGE perspective and
link it to Stochastic Inflation.

> As we progress more matching computations will be necessary,
explore the application of modern computational methods for
scattering amplitudes to cosmological correlators; further test the
introduced regulator, explore other possibilities, e.g. dimensional
regularization.

» Long-term goals: use SASET to obtain an IR-finite two-point
function for ¢, develop a well-defined perturbative expansion, include
metric fluctuations in the framework.

Thank you for your attention!

20



Backup

Approximately exponential inflation of spacetime occurs if

L%¢o)>>(%£?>2

= ¢ “slowly rolls down" a flat potential V.

V(®)
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