Bottom up meets top down

Yukawa couplings and quark masses

Quark mass hierarchies in heterotic orbifold GUTs

Rolf Kappl

Physik Department T30, TU Munich

Max-Planck-Institut für Physik, Munich

to appear soon

IMPRS PPSMC MPI Munich, October 8th 2010

5.4		

Motivation

Bottom up meets top down

GUTs in extra dimensions Heterotic orbifold compactifications

Yukawa couplings and quark masses

Summary

・ロト・西ト・田・・田・ ひゃぐ

Motivation •	Bottom up meets top down oo oo	Yukawa couplings and quark masses	
	Motivation		

Motivation •	Bottom up meets top down	Yukawa couplings and quark masses	Summary o
	Mo	tivation	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

· Can string theory describe experimental results?

Can string theory describe experimental results?

Quark	Mass
up quark	1.5 – 3.3 MeV
charm quark	1.27 $\binom{+0.07}{-0.11}$ GeV
top quark	$171.3 \pm 1.1 \pm 1.2 \text{ GeV}$

Can string theory describe experimental results?

Quark	Mass
up quark	1.5 – 3.3 MeV
charm quark	$1.27 \begin{pmatrix} +0.07 \\ -0.11 \end{pmatrix}$ GeV
top quark	$171.3 \pm 1.1 \pm 1.2$ GeV

• What about a solution to the flavour puzzle in string theory?

Can string theory describe experimental results?

_	Quark	Mass	
	up quark	1.5 – 3.3 MeV	
	charm quark	$1.27 \begin{pmatrix} +0.07 \\ -0.11 \end{pmatrix}$ GeV	
	top quark	$171.3 \pm 1.1 \pm 1.2$ GeV	

• What about a solution to the flavour puzzle in string theory?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○

Topic of this talk: Quark masses in heterotic orbifold GUTs

Summary o

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Bottom up: Why extra dimensions?

Bottom up: Why extra dimensions?

SUSY at the low scale ⇒ Grand unification!

Bottom up: Why extra dimensions?

- SUSY at the low scale ⇒ Grand unification!
- Drawbacks (only in four dimensions):
 - Doublet-triplet splitting
 - Proton decay \Rightarrow 2
 - FCNCs, ...

Bottom up: Why extra dimensions?

- SUSY at the low scale ⇒ Grand unification!
- Drawbacks (only in four dimensions):
 - Doublet-triplet splitting
 - Proton decay ⇒
 - FCNCs, ...
- Possible solution through extra dimensions [Kawamura]
 - · Geometric way to obtain douplet-triplet splitting (orbifold)
 - Realistic predictions for proton decay
 - Many discrete symmetries to forbid FCNCs

Bottom up: Why extra dimensions?

- SUSY at the low scale ⇒ Grand unification!
- Drawbacks (only in four dimensions):
 - Doublet-triplet splitting
 - Proton decay ⇒
 - FCNCs, ...

Possible solution through extra dimensions [Kawamura]

- · Geometric way to obtain douplet-triplet splitting (orbifold)
- Realistic predictions for proton decay
- Many discrete symmetries to forbid FCNCs
- Drawback: We have to believe in the crazy idea of extra dimensions

Bottom up: Why extra dimensions?

- SUSY at the low scale ⇒ Grand unification!
- Drawbacks (only in four dimensions):
 - Doublet-triplet splitting
 - Proton decay ⇒
 - FCNCs, ...
- Possible solution through extra dimensions [Kawamura]
 - · Geometric way to obtain douplet-triplet splitting (orbifold)
 - Realistic predictions for proton decay
 - Many discrete symmetries to forbid FCNCs
- Drawback: We have to believe in the crazy idea of extra dimensions
- Orbifolds are the 'simplest' extra dimensional setup with chiral spectrum

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Bottom up: A GUT in six dimensions

Bottom up: A GUT in six dimensions

- Higher dimensional GUT with $\mathcal{M}^4\times \mathbb{T}^2/\mathbb{Z}_2$ geometry

Top down: Heterotic orbifold compactifications

• Starting point: $E_8 \times E_8$ heterotic string theory in 10D

- Starting point: $E_8 \times E_8$ heterotic string theory in 10D
- Compactification: $\mathcal{M}^4 \times \mathcal{K}^6$

- Starting point: $E_8 \times E_8$ heterotic string theory in 10D
- Compactification: $\mathcal{M}^4 \times \mathcal{K}^6$
- Easiest fertile way: $\mathcal{K}^6=\mathbb{T}^2/\mathbb{Z}_6\times\mathbb{T}^2/\mathbb{Z}_3\times\mathbb{T}^2/\mathbb{Z}_2$

- Starting point: $E_8 \times E_8$ heterotic string theory in 10D
- Compactification: $\mathcal{M}^4 \times \mathcal{K}^6$
- Easiest fertile way: $\mathcal{K}^6 = \mathbb{T}^2/\mathbb{Z}_6 \times \mathbb{T}^2/\mathbb{Z}_3 \times \mathbb{T}^2/\mathbb{Z}_2$
- We obtain $\mathcal{N} = 1$ SUSY in 4D

Top down: Heterotic orbifold compactifications

- Starting point: $E_8 \times E_8$ heterotic string theory in 10D
- Compactification: $\mathcal{M}^4 \times \mathcal{K}^6$
- Easiest fertile way: $\mathcal{K}^6 = \mathbb{T}^2/\mathbb{Z}_6 \times \mathbb{T}^2/\mathbb{Z}_3 \times \mathbb{T}^2/\mathbb{Z}_2$
- We obtain $\mathcal{N} = 1$ SUSY in 4D

This setup is called heterotic mini-landscape

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Top down: The heterotic mini-landscape

Top down: The heterotic mini-landscape

 Promising class of O(100) models from heterotic string theory [Buchmüller, Hamaguchi, Lebedev, Ratz],[Lebedev, Nilles, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter]

Top down: The heterotic mini-landscape

- Promising class of O(100) models from heterotic string theory [Buchmüller, Hamaguchi, Lebedev, Ratz],[Lebedev, Nilles, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter]
- Nice phenomenological properties
 - MSSM spectrum
 - no chiral exotics
 - matter parity, Seesaw
 - Large top Yukawa coupling \Rightarrow Top quark mass is of the right order!
 - Intermediate 6D GUT

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○

Top down: The heterotic mini-landscape

- Promising class of O(100) models from heterotic string theory [Buchmüller, Hamaguchi, Lebedev, Ratz],[Lebedev, Nilles, Raby, Ramos-Sanchez, Ratz, Vaudrevange, Wingerter]
- Nice phenomenological properties
 - MSSM spectrum
 - no chiral exotics
 - matter parity, Seesaw
 - Large top Yukawa coupling \Rightarrow Top quark mass is of the right order!
 - Intermediate 6D GUT

Can we predict the quark masses in this setup?

Summary O

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Yukawa couplings in string theory

Yukawa couplings in string theory

$$\mathcal{W}_{\mathsf{Yukawa}} \supset \mathsf{Y}_{U}^{ij}(\mathsf{R}, \tilde{\mathsf{s}}) q_i \overline{u}_j H_u$$

Yukawa couplings in string theory

Yukawa couplings are no free parameters in string theory

$$\mathcal{W}_{\mathsf{Yukawa}} \supset \mathsf{Y}_{U}^{ij}(\mathsf{R}, \tilde{\mathsf{s}}) q_i \overline{u}_j H_u$$

 The couplings depend on the size of the extra dimensions *R* and standard model singlets s̃

Yukawa couplings in string theory

$$\mathcal{W}_{\mathsf{Yukawa}} \supset \mathsf{Y}_{U}^{ij}(\mathsf{R}, \tilde{\mathsf{s}}) q_i \overline{u}_j H_u$$

- The couplings depend on the size of the extra dimensions *R* and standard model singlets s̃
- Conformal field theory (CFT) results for Y^{ij}_U(R, š) are known to some degree [Hamidi, Vafa], [Dixon, Friedan, Martinec, Shenker]

Yukawa couplings in string theory

$$\mathcal{W}_{\mathsf{Yukawa}} \supset \mathsf{Y}_{U}^{ij}(\mathsf{R}, \tilde{\mathsf{s}}) q_i \overline{u}_j H_u$$

- The couplings depend on the size of the extra dimensions *R* and standard model singlets s̃
- Conformal field theory (CFT) results for Y^{ij}_U(R, š) are known to some degree [Hamidi, Vafa], [Dixon, Friedan, Martinec, Shenker]
- Exact numerical evaluation is difficult

Yukawa couplings in string theory

$$\mathcal{W}_{\mathsf{Yukawa}} \supset Y_U^{ij}(R, \tilde{\mathbf{s}}) q_i \overline{u}_j H_u$$

- The couplings depend on the size of the extra dimensions *R* and standard model singlets s̃
- Conformal field theory (CFT) results for Y^{ij}_U(R, š) are known to some degree [Hamidi, Vafa], [Dixon, Friedan, Martinec, Shenker]
- Exact numerical evaluation is difficult
- Calculation of ratios between couplings is simple

Yukawa couplings in string theory

$$\mathcal{W}_{\mathsf{Yukawa}} \supset Y_U^{ij}(R, \widetilde{s}) q_i \overline{u}_j H_u$$

- The couplings depend on the size of the extra dimensions *R* and standard model singlets s̃
- Conformal field theory (CFT) results for Y^{ij}_U(R, š) are known to some degree [Hamidi, Vafa], [Dixon, Friedan, Martinec, Shenker]
- Exact numerical evaluation is difficult
- Calculation of ratios between couplings is simple
- Strategy: Take the CFT results to calculate the ratios between the quark masses

N /		

・ロト・日本・日本・日本・日本・日本

Some first results

Some first results

Couplings depend on the localization

Summary 0

Some first results

Couplings depend on the localization

Localization of the particles is predicted by string theory

Some first results

Couplings depend on the localization

- Localization of the particles is predicted by string theory
- Two families live at fixed points, the third family lives in the bulk

Yukawa couplings and quark masses $_{\bigcirc \odot \odot \odot \odot}$

More results (up quark sector)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

More results (up quark sector)

Let us focus on a specific model from the mini-landscape

$$Y_{U} = \begin{pmatrix} e^{-\frac{\pi}{4}R_{6}^{2}}A(\tilde{s}) & \frac{\left\langle s_{11}^{0}\right\rangle}{\left\langle s_{5}^{0}\right\rangle}e^{-\frac{\pi}{4}R_{6}^{2}}A(\tilde{s}) & \frac{\left\langle s_{6}^{0}\right\rangle\left\langle s_{11}^{0}\right\rangle}{\left\langle s_{5}^{0}\right\rangle}e^{-\frac{\pi}{4}R_{6}^{2}}A(\tilde{s}) \\ \frac{\left\langle s_{11}^{0}\right\rangle}{\left\langle s_{5}^{0}\right\rangle}e^{-\frac{\pi}{4}R_{6}^{2}}A(\tilde{s}) & A(\tilde{s}) & \left\langle s_{5}^{0}\right\rangle A(\tilde{s}) \\ \left\langle s_{9}^{0}\right\rangle e^{-\frac{\pi}{4}R_{6}^{2}}A(\tilde{s}) & \frac{\left\langle s_{9}^{0}\right\rangle\left\langle s_{11}^{0}\right\rangle}{\left\langle s_{5}^{0}\right\rangle}e^{-\frac{\pi}{4}R_{6}^{2}}A(\tilde{s}) & y_{t} \end{pmatrix}$$

More results (up quark sector)

Let us focus on a specific model from the mini-landscape

$$Y_{U} = \begin{pmatrix} e^{-\frac{\pi}{4}}R_{6}^{2}A(\tilde{s}) & \frac{\left\langle s_{11}^{0}\right\rangle}{\left\langle s_{5}^{0}\right\rangle}e^{-\frac{\pi}{4}}R_{6}^{2}A(\tilde{s}) & \frac{\left\langle s_{6}^{0}\right\rangle\left\langle s_{11}^{0}\right\rangle}{\left\langle s_{5}^{0}\right\rangle}e^{-\frac{\pi}{4}}R_{6}^{2}A(\tilde{s}) \\ \frac{\left\langle s_{11}^{0}\right\rangle}{\left\langle s_{5}^{0}\right\rangle}e^{-\frac{\pi}{4}}R_{6}^{2}A(\tilde{s}) & A(\tilde{s}) & \left\langle s_{5}^{0}\right\rangle A(\tilde{s}) \\ \left\langle s_{9}^{0}\right\rangle e^{-\frac{\pi}{4}}R_{6}^{2}A(\tilde{s}) & \frac{\left\langle s_{9}^{0}\right\rangle\left\langle s_{11}^{0}\right\rangle}{\left\langle s_{5}^{0}\right\rangle}e^{-\frac{\pi}{4}}R_{6}^{2}A(\tilde{s}) & y_{t} \end{pmatrix}$$

The quantity A(s̃) is hard to compute but

$$rac{m_u}{m_c} pprox {
m e}^{-rac{\pi}{4}R_6^2}, \qquad rac{m_c}{m_t} pprox {
m A}(ilde{
m s})$$

More results (up quark sector)

Let us focus on a specific model from the mini-landscape

$$Y_{U} = \begin{pmatrix} e^{-\frac{\pi}{4}R_{6}^{2}}A(\tilde{s}) & \frac{\left\langle s_{11}^{0}\right\rangle}{\left\langle s_{5}^{0}\right\rangle}e^{-\frac{\pi}{4}R_{6}^{2}}A(\tilde{s}) & \frac{\left\langle s_{6}^{0}\right\rangle\left\langle s_{11}^{0}\right\rangle}{\left\langle s_{5}^{0}\right\rangle}e^{-\frac{\pi}{4}R_{6}^{2}}A(\tilde{s}) \\ \frac{\left\langle s_{11}^{0}\right\rangle}{\left\langle s_{5}^{0}\right\rangle}e^{-\frac{\pi}{4}R_{6}^{2}}A(\tilde{s}) & A(\tilde{s}) & \left\langle s_{5}^{0}\right\rangle A(\tilde{s}) \\ \left\langle s_{9}^{0}\right\rangle e^{-\frac{\pi}{4}R_{6}^{2}}A(\tilde{s}) & \frac{\left\langle s_{9}^{0}\right\rangle\left\langle s_{11}^{1}\right\rangle}{\left\langle s_{5}^{0}\right\rangle}e^{-\frac{\pi}{4}R_{6}^{2}}A(\tilde{s}) & y_{t} \end{pmatrix}$$

The quantity A(s̃) is hard to compute but

$$rac{m_u}{m_c}pprox {f e}^{-rac{\pi}{4}R_6^2}, \qquad rac{m_c}{m_t}pprox {f A}(ilde s)$$

We get a prediction for R₆!

Summary o

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

How to rule out string theory models

Summary o

How to rule out string theory models

• The prediction for *R*₆ is in tension with Gauge-top unification [Hosteins, RK, Ratz, Schmidt-Hoberg]

How to rule out string theory models

- The prediction for *R*₆ is in tension with Gauge-top unification [Hosteins, RK, Ratz, Schmidt-Hoberg]
- Predictions for the down quark masses

$$\frac{m_d}{m_s} \approx \frac{62}{63}, \qquad \frac{m_c}{m_t} \approx e^{-\frac{\pi}{4}R_6^2} \frac{126}{125} \frac{D(\tilde{s})}{U(\tilde{s})}$$

How to rule out string theory models

- The prediction for *R*₆ is in tension with Gauge-top unification [Hosteins, RK, Ratz, Schmidt-Hoberg]
- Predictions for the down quark masses

$$\frac{m_d}{m_s} \approx \frac{62}{63}, \qquad \frac{m_c}{m_t} \approx e^{-\frac{\pi}{4}R_6^2} \frac{126}{125} \frac{D(\tilde{s})}{U(\tilde{s})}$$

This model cannot describe nature!

How to rule out string theory models

- The prediction for *R*₆ is in tension with Gauge-top unification [Hosteins, RK, Ratz, Schmidt-Hoberg]
- Predictions for the down quark masses

$$\frac{m_d}{m_s} \approx \frac{62}{63}, \qquad \frac{m_c}{m_t} \approx e^{-\frac{\pi}{4}R_6^2} \frac{126}{125} \frac{D(\tilde{s})}{U(\tilde{s})}$$

- This model cannot describe nature!
- Possible loophole: radiative quark mass generation [Buchmüller, Wyler]

How to rule out string theory models

- The prediction for *R*₆ is in tension with Gauge-top unification [Hosteins, RK, Ratz, Schmidt-Hoberg]
- Predictions for the down quark masses

$$\frac{m_d}{m_s} \approx \frac{62}{63}, \qquad \frac{m_c}{m_t} \approx e^{-\frac{\pi}{4}R_6^2} \frac{126}{125} \frac{D(\tilde{s})}{U(\tilde{s})}$$

- This model cannot describe nature!
- Possible loophole: radiative quark mass generation [Buchmüller, Wyler]
- Other models in the heterotic mini-landscape can also be tested

5.4		

・ロト・日本・日本・日本・日本・日本

Conclusions

	Con	oluciona
Motivation o	Bottom up meets top down	Yukawa couplings and quark masses

 Predictions for quark mass ratios in string-derived models are possible

Summary

・ロト・日本・モート ヨー うへの

N.A.		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Conclusions

- Predictions for quark mass ratios in string-derived models are possible
- String theory is very restrictive

N.4		

Conclusions

- Predictions for quark mass ratios in string-derived models are possible
- String theory is very restrictive
- It is possible to falsify a large number of string-derived models

N /		

Conclusions

- Predictions for quark mass ratios in string-derived models are possible
- String theory is very restrictive
- It is possible to falsify a large number of string-derived models

Thank you for your attention!