

0 0

0 0 CERTIFICATION OF SMDT CHAMBERS FOR THE PHASE II UPGRADE OF THE ATLAS MUON SPECTROMETER

Max Planck Institute for Physics Munich

Nick Meier

0

0 0 0

0 0 0 0

0 0

0

0

0 0

																0	0	0	0
																0	0	0	0
																0	0	0	0
															•	0	0	0	0
															0	0	0	0	0
														۰		0	0	0	0
														٥	0	0	0	0	0
												۰	0	۰	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

BRIEF OVERLOOK ON ATLAS MUON SPECTROMETER

Muon Spectrometer

- Monitored Drift Tubes Chambers (MDT)
- Resistive Plate Chambers (RPC)
- Micromegas Chamber (MM)
- Thin Gap Chambers (TGC)

Phase 2 Muon System Upgrades

- to maintain efficiency and capability at HL-LHC
 - New thin-gap RPC
 - New trigger and readout electronics
 - 96 new BIS small-diameter MDT (sMDT) for the inner barrel
 - Designed and developed by MPI for Physics Munich
 - 50:50 constructed at MPI for Physics Munich and collaboration of University of Michigan and Michigan

SU

SMDT

- Same nominal gas gain as in MDT
- Reducing the drift tube radius (R) by factor 2
- ten times higher gamma background rate capability
- Effect of space charge fluctuations suppressed at large radii
 - Gain loss due to space charge reduced proportional to R³
- 4 times lower electronics dead time (=max. drift time)
- tube cross section exposed to the radiation reduced by effect of 2
 - No aging effects after foreseen integrated luminosity of HL-LHC

Parameter	MDT	sMDT
Tube material	Aluminium	Aluminium
Outer tube diameter	29.970 mm	15.000 mm
Tube wall thickness	0.4 mm	0.4 mm
Wire material	gold-plated W/Re (97/3)	gold-plated W/Re (97/3)
Wire diameter	50 µm	50 µm
Gas mixture	Ar/CO ₂ (93:7)	Ar/CO ₂ (93:7)
Gas pressure	3 bar (absolute)	3 bar (absolute)
Norminal Gas gain	2 × 10 ⁴	2 × 10 ⁴
Wire potential	3080 V	2730 V
Maximum drift time	~ 700 ns	~ 190 ns
Average resolution per tube	83 µm	106 µm
Drift tube muon efficiency	95%	94%

BIS1-6 CHAMBERS

- 20 readout mezzanine cards on each chamber
- Every mezzanine card has 24 tubes/channels connected to it
- So every 4th channel is one layer in the chamber

CERTIFICATION TEST PROTOCOL OF SMDT CHAMBERS

- Gas leak rate test
- Search for noisy channels
- Cosmic ray tests
 - Search for dead channels
 - Drift tube spatial resolution measurement
 - Drift tube muon detection efficiency measurement

Certification test protocol is first done at MPI Munich the production site and then after transportation to CERN BB5 construction and test facility again.

CERTIFICATION TEST CAMPAIGN AT CERN BB5 FACILITY

- Three chambers have been tested
- Stacked configuration with the Scintillator on top of the stack (3A06,6A08 and 2A02 from top to bottom)
- The rest of the procedure is the same as at the production side in Munich
- To see if there had been any problems or damage after transportation
- In the first activation of chambers the current during ramping HV is closely inspected and need to fall below 50 nA to have a dark current of less then 150pA per tube
 - Sometimes increased because of humidity or damaged electronics

GAS LEAK RATE TEST

- Pressurized at 3 bar in the operating gas mixture of Ar:CO₂ (93:7)
- Measure pressure for every multilayer with a
 Baratron pressure gauge
- Measuring the temperature with 12 temperature sensors (6 on top 6 on the bottom)
- To obtain good statistic the two measurements must be at least 48 hour apart

 $\Delta p \left[\frac{\mu bar}{h} \right] = \left(\frac{p_{end}(t_2)[\mu bar]}{T_{end}(t_2)[K]} - \frac{p_{start}(t_1)[\mu bar]}{T_{start}(t_1)[K]} \right) \frac{293K}{t_2 - t_1[h]}$

• Maximum allowed value is $2n * 10^{-8} \frac{bar*l}{s}$ for n=464 tubes getting a maximum of 550 $\frac{\mu bar}{h}$ for an entire chamber

Chamber[time]	$\Delta p_{ML1} \left[rac{\mu bar}{h} ight]$	$\Delta p_{ML2} \left[\frac{\mu bar}{h} \right]$
3A06 [98.5h]	97 ± 32	78 ± 30
6A08 [60.5h]	15 ± 50	31 ± 50
2A02 [356h]	291 <u>+</u> 7	263 ±7

SEARCH FOR NOISY CHANNELS

- 1 min of random trigger (50,000 triggers)
- Looking at a threshold of p.e. 25 [code 121] for noise above 1 kHz
- Problems which more often occurred
 - Humidity
 - Damaged electronics, which can be swapped
 - Gas bar grounded incorrectly
 - Distribution of HV cables inside the chamber
 - Resolved in later chambers with shortened HV cables

NOISE PROBLEM FROM THE GAS BAR GROUNDING

BEFORE DESIGN CHANGE

AFTER DESIGN CHANGE

SEARCH FOR NOISY CHANNELS

- 1 min of random trigger (50,000 triggers)
- Looking at a threshold of p.e. 25 [code 121] for noise above 1 kHz
- Problems which more often occurred
 - Humidity
 - Damaged electronics, which can be swapped
 - Gas bar grounded incorrectly
 - Distribution of HV cables inside the chamber
 - Resolved in later chambers with shortened HV cables

Before shortening of HV cables and cable management

After shortening of HV cables and cable management

NOISE RESULTS AFTER RESOLVING THE HV CABLE NOISE PROBLEMS

SEARCH FOR DEAD CHANNELS

• 2-5 min of cosmic data at high threshold

- More time is needed with larger distance between the scintillator and the chamber
- Looking for
 - Dead channels
 - Real dead tubes
 - Damaged electronics, which can be replaced

3A06 card 15

DRIFT TUBE SPATIAL RESOLUTION MEASUREMENT

- Reconstructing the muon tracks out of the measured radii
- Deviation from the track

$$\sigma = \sqrt{\operatorname{Var}(\delta)} = \sqrt{\operatorname{Var}(r-d)} = \sqrt{\frac{\operatorname{Var}(r1-r2)}{2}}$$

Excluded layer from

track fit

DRIFT TUBE MUON DETECTION EFFICIENCY MEASUREMENT

 $\varepsilon_{tube} = \frac{nr.of \ detected \ hits \ in \ tube \ matching \ the \ reconstructed \ tracks}{number \ of \ all \ reconstructed \ tracks \ crossing \ the \ tube}$

- Excluding always one layer from the muon track fits
- Going through every track, which goes trough one of the tubes in the excluded layer and look if there also matching a hit the tube

SUMMARY

- All BIS1-6 chambers has been constructed at MPI Munich and shipped to CERN for the further certification test
- Same certification procedure as at the MPI Munich production site

2A02,3A06,6A08 have been tested chamber and showed the following results:

- No damage (during transport)
 - No additional dead channels
 - No increased leak rate
 - Same spatial resolution and muon detection efficiency as back at MPI Munich
- 2 days per chamber will be possible to achieve

All data and results obtained at CERN BB5 facility are compatible with the measurements from MPI Munich!