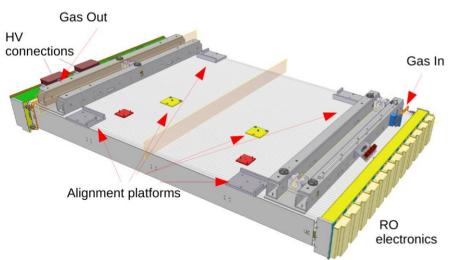
Quality Control in the Construction of new small-diameter Muon Drift Tube (sMDT) Chambers for the ATLAS Muon Spectrometer at the HL-LHC

Daniel Buchin

on behalf of the ATLAS muon working group at MPP Munich

Max Planck Institute for Physics, Munich

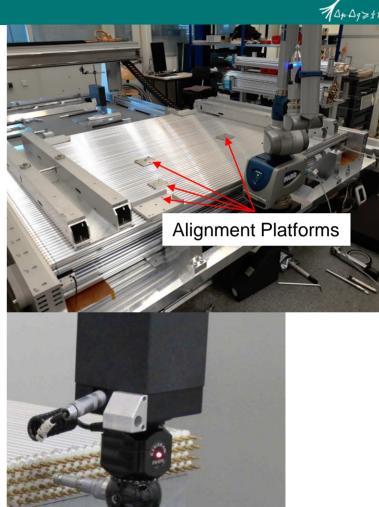

FSP ATLAS

Erforschung von Universum und Materie 20th March, 2023

MAX PLANCK INSTITUTE FOR PHYSICS

Project Overview

- Installation of 96 small-diameter Muon Drift Tube (sMDT) chambers + thin-gap RPCs during the ATLAS detector upgrade for the High-Luminosity LHC in the small barrel sector
- Goal: increase the trigger acceptance, rate capability, efficiency and selectivity
- sMDTs half the diameter of previous MDTs (30 mm \rightarrow **15 mm**)
- 464 (BIS2-6) up to 560 (BIS1) sMDTs make up a chamber



- Operated with Ar:CO2 (93:7) gas mixture at 3 bar absolute pressure and 2730 V operating voltage to provide a single tube resolution of 100 microns
- Sense wire positioning accuracy of 20 microns required to achieve desired momentum resolution
- 48+2 chambers built at MPI, 48+2 chambers built at University of Michigan

Quality Control Motivation

- High mechanical precision, high reliability and lifetime over >15 years of ATLAS operation at HL-LHC
- Stringent quality control and documentation of all components and at all steps of the chamber construction (see Alice's talk, T 23.5):
 - Tube production
 - Chamber and alignment sensor platform gluing
 - Wire position measurements
 - Gas system installation (covered by Alice)
 - Electronics installation (covered by Alice)
 - Cosmic ray tests (covered by Alice)

Drift Tube QC

Wiring and wire tensioning stations

Daniel Buchin - MPP Munich

- Drift tube production under class 1000 clean room
 conditions to avoid any contamination
- Semi-automated assembly
- Up to 300 tubes can be produced + tested per week

Drift Tube QC:

- Gas leakage rate
 - Tube filled with Ar:He (95:5) gas mixture at
 3 bar overpressure in evacuated cylinder
 - detecting leaking He, translate to leaking Ar
- Dark current
 - Dark current tested with nominal ArCO₂ gas mixture at the nominal voltage + 300 V
 - Measured and averaged over 10 minutes 4

Drift Tube QC

- Tube length
 - Selection into 3 length categories
 - Tubes of similar lengths in the same multilayer to avoid problems during gas system installation
- Wire tension
 - Assures knowledge of wire position over whole tube length
 - 2 measurements with over 2 weeks delay → make sure wires don't slip out of the crimps
- Production failure rate ~5 %

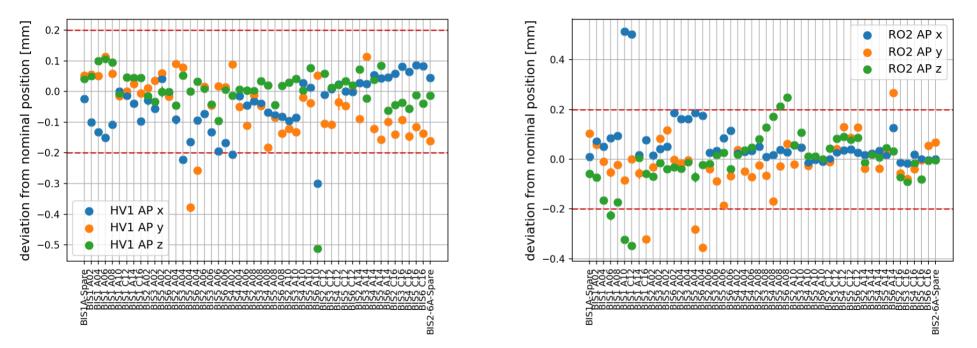
Drift Tube QC



OK (gas leak < 10^{-5} mbar·l/s): 26044 Tubes

Not OK: 6 Tubes **Tube certification:** Number of tested tubes $mbar \times l$ Sensitivity: 3×10^{-5} 10⁴ Ē Each tube labeled and identified with a bar code in the QC S Limit: $< 10^{-5} \frac{mbar \times l}{2}$ 10^{3} database including its location in the chamber Tubes checked to be "good" according to the database 10² before gluing them in the chamber 10늘 OK (335<Tension<370 g): 24913 Tubes OK (current leak < 2 nA): 25813 Tubes 10⁻⁷ 10⁻⁶ 10⁻⁵ 10-8 10⁻⁴ 10^{-2} 10-Leakage [mbar-i Not OK: 421 Tubes Not OK: 135 Tubes Number of tested tubes 1000 Number of tested tube Sensitivity: 0.5 nA 10⁴ **Nearly no rejections** Limit: < 2 nA800 10³ 600 Limits: < 370*g* > 335g10² 400 **Dust contamination** 10 inside tubes for short 200 time period 350 320 330 340 360 310 370 380 10⁻¹ 10⁴ 10 1 10 Current InAl Wire tension [a] Daniel Buchin - MPP Munich

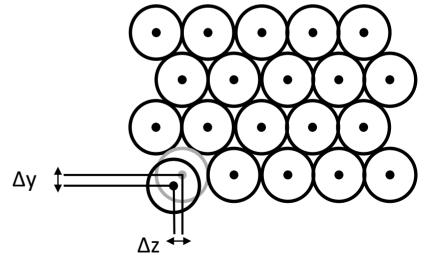
Alignment Platforms

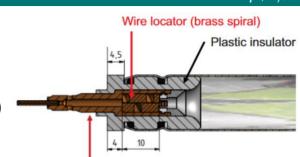

- Chamber and platform gluing in temperature-controlled class
 10000 clean room
- Platforms for mounting of optical sensors of the global chamber alignment monitoring system
- 3D electro-mechanical feeler (FARO arm) measures platform positions in each direction → tolerance of 200 (500) µm for AP and CCC (B-field) platforms
- Positions relative to the sense wire grid must be known with at least 30 µm precision
- FARO arm measurement achieves 10 μm precision

Platform Positions

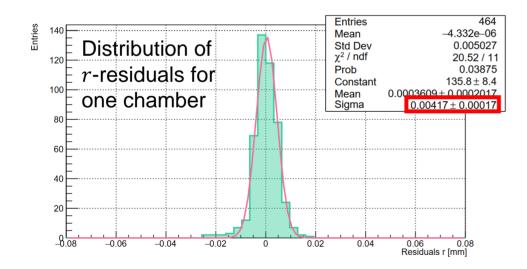
• E.g. AP platform position results:

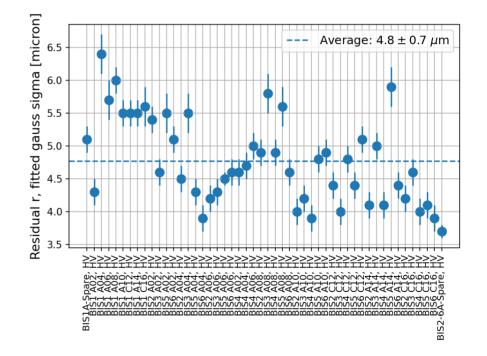
- All 3 angles are derived from measurements as well
- Platform positions within specifications with few exceptions



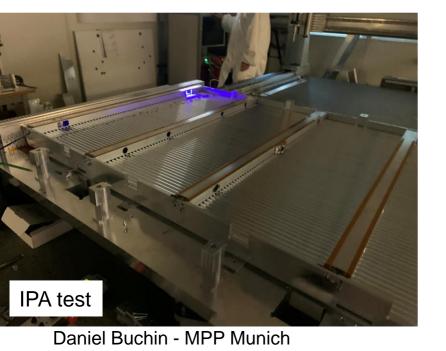

Wire Position Measurements

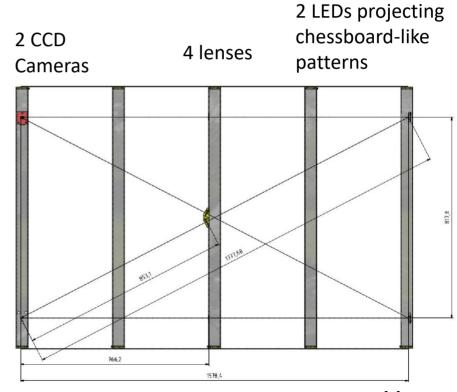
- Automated Coordinate Measurement Machine (CMM) used to measure position of each endplug
- Derive wire position accuracy w.r.t. fitted sense wire grid $\Delta r (r^2 = y^2 + z^2)$
- 20 µm precision required to achieve desired momentum resolution
- Monitor further important quantities: layer distances, gravitational sag, torsion External reference surface





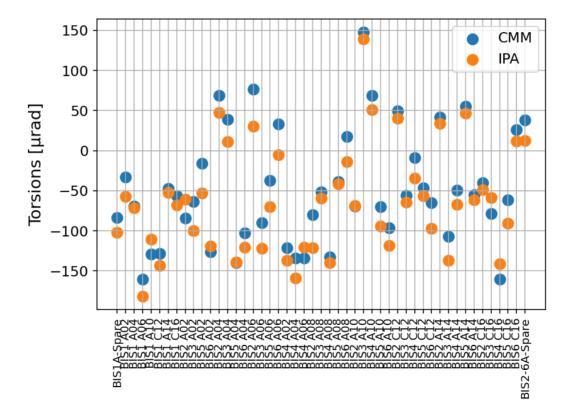
Wire Position Measurements


- r t = fitte d wine evid) e devidete d fer bethe side <math>r = (DO = U)/r of each shows ber
- Residual Δr (w.r.t. fitted wire grid) calculated for both sides (RO, HV) of each chamber
 - Wires positioned with around 5 µm precision relative to the wire sense array
 - \rightarrow Well below the required 20 $\mu m!$

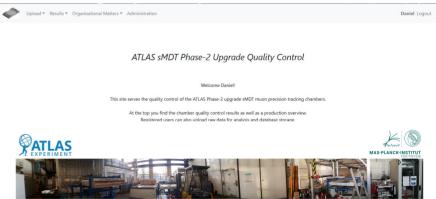


In-Plane Alignment System and Torsion

- In-Plane Alignment System (IPA) situated in the spacer between the multilayers
- Responsible for the monitoring of unstable chamber torsion
- Validate IPA configuration by comparing CMM and IPA torsion results



In-Plane Alignment



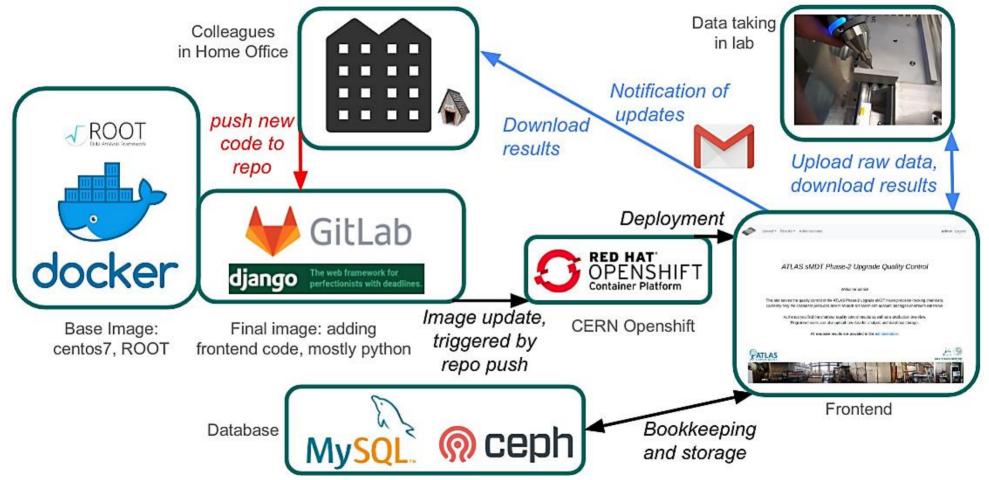
- CMM and IPA torsion angles typically within < 20 µrad of each other
 - \rightarrow Negligible compared to overall torsion variation, validates IPA precision

Quality monitoring

- TAp. Dy > 1 t
- Common QC database for the two production sites at MPI Munich and Michigan, hosted at CERN
- Web-frontend, **upload raw data** from QC measurements
- Automated analysis of e.g. platform position or CMM wire position measurements
- Mechanical and electronics performance posted on webpage in real time
- Automatic email notification of experts about new results
 - \rightarrow fast feedback for the chamber construction
- Storage of data about each individual drift tube and chamber production steps

Summary

- Stringent and exhaustive QC program essential part of series production of new sMDT chambers for the ATLAS phase-2 upgrade
- Tube production finished with excess of tubes, multiple tests before certification for gluing
- Validation of chamber quality in every step of production
- Database with web-frontend to assure fast tracking of the quality measurements
- All 48+2 chambers constructed at MPI, 42+1 certified and 38 chambers shipped to CERN already
- QC continues at CERN!



BACKUP

How it works

QA/QC Webpage

Upload - Results - Organisational Matters - Administration

Daniel Logout

ATLAS sMDT Phase-2 Upgrade Quality Control

Welcome Daniel!

This site serves the quality control of the ATLAS Phase-2 upgrade sMDT muon precision tracking chambers.

At the top you find the chamber quality control results as well as a production overview. Registered users can also upload raw data for analysis and database storage.

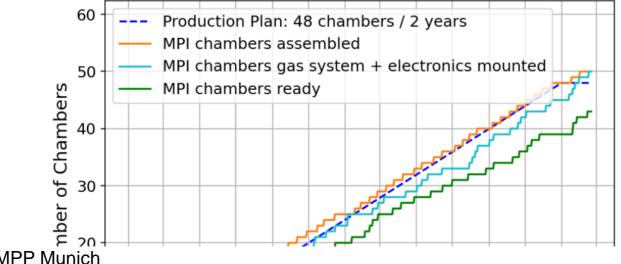
Production Overview

Gas Leakage

Chamber Production

CCC/B Platform Positions

CMM


CMM Residuals

Torsion

Cosmic

AP Platform Positions

Chamber Production Progress

Camber Overview

MPI Module 25: BIS3 A08

Electronics	No
Gas Tightness	Yes
CMM Data	Yes
Platform Positions	Yes
Rasnik Reference Data	Yes
Rasnik Data	Yes

Technical Drawing

MPI Module 25: BIS3 A08

RO Axial-Praxial 1					
Coordinate	Distance	Distance Stat. Error	Distance Nominal	Offset to Nominal	
x	424.026	0.005	424.000	0.026	
у	19.409	0.007	19.500	-0.091	
z	90.482	0.005	90.450	0.032	
HV Axial-Praxial 1					
Coordinate	Distance	Distance Stat. Error	Distance Nominal	Offset to Nominal	
x	1333.976	0.005	1334.000	-0.024	
у	19.453	0.009	19.500	-0.047	

90.450

0.038

0.009

90.488

Daniel Buchin - MPP Munich

z