

Higgs Boson Cross Section Measurement in the $H \to ZZ \to 4\ell$ Channel with Early Run 3 ATLAS Data

Alice Reed

Supervised by Sandra Kortner Max-Planck-Institut für Physik

DPG Spring Meeting - Dresden 2023

MAX-PLANCK-INSTITUT FÜR PHYSIK

ATLAS Run 3 Data Taking

- Ar Ageit
- Run 3 of the LHC began in July 2022 with an increased centre of mass energy of 13.6 TeV
- \blacksquare Production rate of Higgs bosons is expected to increase by $\sim 7-8\%$ at this higher energy
- Preliminary luminosity of Run 3 data in 2022 is ~ 30.7 fb⁻¹, allowing for the first Higgs boson property measurements in this new regime

$H \rightarrow 4\ell$ Decay Channel

- Characterised by a final state containing two pairs of oppositely charged leptons from the same primary vertex
- Four possible decay channels: $4\mu, 4e, 2e2\mu$ and $2\mu 2e$

Event reconstruction requirements: $p_T^{l1} > 5 \text{ GeV}, p_T^{l2} > 10 \text{ GeV}, p_T^{l3} > 15 \text{ GeV}, p_T^{l4} > 20 \text{ GeV},$ $50 < m_Z < 106 \text{ GeV}, 12 < m_{Z^*} < 115 \text{ GeV},$ $115 < m_{4\ell} < 130 \text{ GeV}$

- Sideband regions used to constrain dominant ZZ* background: 105 < m_{4ℓ} < 115 GeV, 130 < m_{4ℓ} < 160 GeV</p>
- Clear signature allows for an early Run 3 measurement of the inclusive Higgs boson production cross section

Fiducial Cross Section Measurements

Data

Syst. uncertainties

- Production cross section is measured in a fiducial phase space closely matching the detector acceptance and event reconstruction requirements
- Fiducial cross section, σ_i^{fid}, for each decay channel, *i*, is extracted using a template fit of the P_i(m_{4ℓ}) distribution, according to the number of reconstructed events, N_i, in the signal region:

$$N_{i}\left(m_{4\ell}\right) = \sum_{i} \epsilon_{i} \cdot \left(1 + f_{i}^{\text{nonfid}}\right) \cdot \sigma_{i}^{\text{fid}} \cdot \mathcal{P}_{i}\left(m_{4\ell}\right) \cdot \mathcal{L} + N_{i}^{\text{bkg}}\left(m_{4\ell}\right)$$

$$(arxiv:2004.03447)$$

ATLAS

aaF@N3LO + XH $H \rightarrow ZZ^* \rightarrow 4l$ MG5 ExEx + XH $\sigma_i^{\text{fid}} = \sigma_i \cdot A_i \cdot \mathcal{B} = \text{Parameter of Interest}$ √s = 13 TeV, 139 fb⁻¹ NNLOPS + XH HBes 2.3 NNI O+NNI I + XH $\mathcal{P}_i(m_{4\ell}) = m_{4\ell}$ signal shape $N_i^{\text{bkg}}(m_{4\ell}) = \text{Background contribution}$ Cross section [fb] <u>କ</u> ୬୦ $A_i = \text{Acceptance} = N_{\text{fid}}/N_{\text{tot}}$ 70 $\epsilon_i = \text{Reconstruction efficiency}$ $f_i^{\text{nonfid}} = \text{Fraction of events outside}$ the fiducial region which are reconstructed in the signal region 30 0.4 20 10

_q

■ Comparison of four-lepton mass distribution (m_{4l}) in Run 2 and Run 3 simulations with 30.7 fb⁻¹ in signal region 115 < m_{4l} < 130 GeV:</p>

Run 3 - All Signal

Run 3 - ZZ* background

 Run 3 lepton performance calibration still in progress, especially in the low p_T region

This results in fewer Higgs bosons being reconstructed when compared to Run 2 data with the same integrated luminosity

- Feasibility of total fiducial cross section measurement studied for different amounts of integrated luminosity: 30, 20, 10 and 5 fb⁻¹
- Study is based on scaling the predictions of the Run 2 Monte Carlo (MC) simulation to different integrated luminosities
- MC events are reweighted to reflect the Run 3 muon reconstruction efficiencies as this was initially lower than the full Run 2 efficiency
- With 30 fb⁻¹, measurement is possible for the individual decay channels:

Simulation	- 5		
Channel	σ_{fid} (13TeV)	+ stat. err	- stat. err
inclusive	3.345	17.9%	16.4%
4μ	0.884	30.5%	26.4%
4e	0.885	44.3%	36.2%
$2\mu 2e$	0.788	42.0%	34.5%
$2e2\mu$	0.788	36.9%	31.1%

ATLAS Work in Progress

■ ZZ* background normalisation can be estimated from data in the m_{4ℓ} sideband regions (instead of the purely MC-based prediction): 105 < m_{4ℓ} < 115 GeV and 130 < m_{4ℓ} < 160 GeV</p>

Introducing this extra degree of freedom increases the statistical uncertainty on the fiducial cross section by no more than 1-2%

 $H \rightarrow ZZ \rightarrow 4\ell$ Cross Section Measurement in Run 3 at ATLAS

- Expected fiducial cross section precision from Run 2 and Run 3 simulations are compared
- So far, only statistical uncertainties are taken into account
- Statistical uncertainties are $\sim 1 3\%$ larger with Run 3 simulations due to fewer Higgs bosons being reconstructed

	Run 2 MC, scaled to 30 fb $^{-1}$			Run 3 MC, 30.7 fb $^{-1}$		
Channels	σ_{fid}	+ Err. [%]	- Err [%]	σ_{fid}	+ Err. [%]	- Err [%]
inclusive	3.345	17.5	16.1	3.588	18.1	16.5
4μ	0.884	29.6	25.6	0.945	30.1	26.0
4e	0.855	44.3	36.2	0.955	47.9	38.1
$2\mu 2e$	0.788	41.6	34.3	0.843	44.8	36.0
$2e2\mu$	0.788	36.7	31.0	0.844	36.8	30.8

Simulation

ATLAS Work in Progress

- Experimental systematic uncertainties related to muon and electron identification/reconstruction are also considered
- Up and down variations in m_{4l} due to systematic uncertainties are considered relative to the nominal distribution
- Experimental systematics which have the largest impact are related to the muon isolation efficiency and electron identification efficiency:

 $H \rightarrow ZZ \rightarrow 4\ell$ Cross Section Measurement in Run 3 at ATLAS

Impact of Systematic Uncertainties on σ_{fid}

- Including systematic uncertainties increases the overall uncertainty on σ_{fid}^{incl} by $\sim 2\%$
- Large systematic uncertainties for e⁻ are conservative as the Run 3 lepton performance calibration is still in progress

ATLAS Work in Progress

Simulation

		Run 3 stat. only		Run 3 with sys.	
Channels	σ_{fid}	+ Err. [%]	- Err [%]	+ Err. [%]	- Err [%]
inclusive	3.647	19.6	18.0	21.2	18.9
4μ	0.964	31.5	27.4	32.3	27.6
4e	0.965	48.7	39.0	59.0	42.4
$2\mu 2e$	0.859	46.2	37.1	53.4	39.6
$2e2\mu$	0.859	38.4	32.2	38.6	32.2

- Run 3 of the LHC operating at an increased centre of mass energy, 13.6 TeV, increasing the Higgs boson production rate by $\sim7-8\%$
- \blacksquare Expected statistical uncertainty on fiducial cross section in Run 3 $\sim 1-3\%$ larger than in Run 2
- This is expected to improve in the very near future as updated lepton identification and reconstruction is performed
- Future Plans:
 - Evaluate the impact of theoretical systematic uncertainties \rightarrow expected to be small with respect to experimental systematics
 - \blacksquare Update analysis with improved lepton performance and perform σ_{fid} with Run 3 data from 2022
 - Differential cross section measurement with Run 3 data