Search for charged Higgs bosons in H⁺→Wh decays with the ATLAS detector

Simon Grewe 86. DPG-Frühjahrstagung Dresden 20.03.2023 grewe@mpp.mpg.de

MAX-PLANCK-INSTITUT FÜR PHYSIK

Motivation

- Many extensions of the SM extend the Higgs sector and predict charged scalars H⁺
- The decay H⁺ → Wh (h is the 125 GeV Higgs boson) is so far not covered at the LHC
 - Previous searches focused on $H^+ \rightarrow tb$ and $H^+ \rightarrow \tau v$
- H⁺ → Wh is the dominant decay in certain models:
 - 2-Higgs-Doublet-Model
 - Next-to-2Higgs-Doublet Model
 - Georgi-Machacek Model
 - 3HDM

Analysis strategy

- Reconstruct H^+ out of the final state
- Search for an excess of events in inv. mass spectrum ("Bump-Hunt")
- \bullet H^+ is produced in association with a top and bottom quark

events

- Final state with:
- 1 charged lepton
- 6 or more jets
- 4 b-tagged jets
- Missing transverse momentum
- Reconstruct H⁺ out of:
- H⁺→ lvbb: 2 jets (Higgs)+ lepton and neutrino (W)
 H⁺→ qqbb: 2 jets (Higgs)+ 2 Jets (W)
- Challenges:
 - Distinguish the 2 decay modes (identical final state)
 - reconstruct $\mathsf{H}^{\scriptscriptstyle +}$ from this complicated final state

00000

background

mass

Signal classification

- A method to distinguish the H⁺→qqbb & H⁺→ lvbb decays is needed
- Reconstruct a leptonically decaying top-quark (t \rightarrow lvb)
 - Reconstruct from lepton + neutrino +b-jet
- If a leptonically decaying top-quark can be reconstructed successfully classify event as: H ⁺→qqbb
 - Else classify as event as H⁺→Ivbb

Simon Grewe

Signal reconstruction

- Reconstruct H⁺ out of the final state
 - reconstruct W⁺ out of a Lepton & E_T^{miss}/ 2 Jets
 - reconstruct h out of 2 Jets
- Train a BDT for each decay channel to reconstruct the ${\rm H}^{\scriptscriptstyle +}$
 - Signal: correct combination 2 Jets+ Lepton & E_T^{miss} /4 Jets stemming from H⁺ decay
 - Combinatorial background: all other combination

Input variable used in the training of the lvbb BDT

29.11.2022

100

150

200

250 mass_{Higgs}

50

0.06 0.04

Simon Grewe

BDT application

- Evaluate the BDT for all possible lvjj/jjjj combinations in the event
- Choose the H⁺→ lvbb/qqbb candidate with the highest BDT response (max BDT Response) as H⁺

Simon Grewe

H⁺ mass resolution

- Calculate: $\frac{m_{W^+h}^{reco} m_{W^+h}^{truth}}{m_{W^+h}^{truth}}$
- Fit an asymetric Bukin-funktion to the distributions
- Take the variance as the mass-resolution
- Large tails stem from wrongly classified events

Signal and control regions

- Split the regions by the jet and b-jet multiplicities
- The max BDT Response distribution is distinct between signal and background
- ivent Fraction • Top quark pairs are the dominant background process
- Define signal and control regions by cuts on the max BDT Response variable
 - maximise/minimize $s_{\sqrt{b}}$

29.11.2022

Signal region m_{Wh} distributions

Limits on $\sigma(pp \rightarrow tbH^+)x BR(H^+ \rightarrow Wh)$

- Signal regions are still blinded
- Maximum Likelihood Fit on the reconstructed H⁺ mass spectrum
- Fit the signal strength μ and the tt normalisation factor
 - Fit all regions simultaneously
 - All systematic and statistical uncertainties are taken into account
- Expected limits are stronger compared to ATLAS H⁺ → tb search [2102.10076]
 - Same final state is analyzed
 - Similar background contributions

Conclusion

- $H^+ \rightarrow Wh$ is studied for the first time at the LHC
 - H⁺ is produced in association with a top- and bottom-quark
- A complete analysis strategy for the H⁺→ Wh search was developed
 - The mass of a reconstructed top quark is used to distinguish the H⁺ → lvbb and H⁺→ qqbb decay channels
 - Boosted Decision Trees are used to reconstruct the H⁺→ Wh decay out of a complicated final state
 - The preliminary expected limits are comparable with existing H⁺ searches