Optimization of the remoTES design using silicon absorber

MAX-PLANCK-INSTITUT FÜR PHYSIK

- SMuK DPG 2023, March 20^{th} to 24^{th}
- Speaker: Kumrie Shera

COSINUS: Cryogenic Observatory for SIgnals seen in Next generation Underground Searches

- Direct dark matter search experiment operating Nal as cryogenic calorimeter
- Nal is a very good scintillator
- Two channel readout: phonon signal and light signal by using transition edge sensors (TES)

Transition Edge Sensor (TES)

- Sensors made of superconducting thin film $(T_c = 15 \ mK)$ used to measure the temperature increase (phonons) in the order of $\sim \mu K$
- Operated in the transition from normal conducting to the superconducting phase
- Small increase in the temperature $\Delta T (\mu K)$ leads to a significant change in the resistance $\Delta \Omega (m\Omega)$

MAX-PLAN

TES and NaI

• NaI: Hygroscopic and low melting point

remoTES design

- First theoretically proposed by Matt Pyle and colleagues in 2015 arXiv:1503.01200
- TES deposited on a separate wafer
- Connected to the crystal via an Au-pad and an Au bond wire
- COSINUS provided the first experimental implementation of this specific design

https://doi.org/10.1016/j.nima.2022.167532

- Nal is not subjected to the fabrication process of TES
- Opens the possibility to use other NaI-like crystals as cryogenic calorimeters

MAX-PLANCK

SMuK DPG 2023, Kumrie Shera

Overview of the different detector setups						
Run	Detector	Characteristics				
1	Ф	1 μm glued Au-pad	Wedge-bond			
0	Elektra	200nm sputtered Au-pad	Ball-bond			
2	Olympia	8 μm glued Au-pad	Ball-bond			
Elektra´		200nm sputtered Au-pad	2nd ball-bond			
3	Olympia´	8 μm glued Au-pad	Removal of Au-bridge			

Optimization studies of remoTES using Si crystal as benchmark Si (20×10×5 mm³) Absorber 1 μm thick (glued) Au-pad **Detector** Φ 17 μm thick (wedge-bond) Au-wire W-TES on Al_2O_3 TES remoTES **Baseline resolution** 434 eV Thermal link to the heat bath Au-bridge Schematic representation of the TES on the wafer

MAX-PLANCK

Wedge- bond on 1µm thick Au-foil

- Wedge bond detaches from Au-pad → not the entire Au-Pad area available for phonon collection
- It affects the Au-pad quality
- Bad thermal conductance
- Wedge-bond uses force →might cause cracks on the NaI crystal

2nd bond 1st bond SMuK DPG 2023. Kumrie Shera MAX-PLAN

Alternative: Ball-bond

- Improved thermal conductance
- Less destructive for NaI crystal

For direct comparison with previous detector setup a **ball-bond** on **1µm** thick Au-foil was tried. Not successful

9

Detector Elektra

Absorber	Si (20×10×5 mm ³)
Au-pad	200 nm thick (sputtered)
Au-wire	25µm thick (ball-bond)
TES	W-TES on Al_2O_3
Baseline resolution	132 eV

Ball-bonds on sputtered Au-pad

MAX-PLANCK-INSTITUT

MAX-PLANCK-INSTITUT

SMuK DPG 2023, Kumrie Shera

Optimization studies of remoTES using Si crystal as benchmark Absorber Si $(20 \times 10 \times 5 \ mm^3)$

Detector Elektra'

Modification: 2^{*nd*} ball-bond

MAX-PLANC

• Better thermal conductance

- Two different event classes
- Slow events (slow rise time) a.
- Fast events (fast rise time) b.

MAX-PLANC FUR PHYSIK

Comparison of the pulse shapes between detector setup Elektra and Elektra'

MAX-PLAN

No essential difference between the pulse shapes of the two different detector setups Elektra and Elektra'.

SMuK DPG 2023, Kumrie Shera

Detector Olympia

MAX-PLANC

	Au-wir
Contraction of the local division of the loc	TES
	Baselir

Absorber	Si (20×10×5 mm ³)
Au-pad	<mark>8 μm</mark> thick (glued)
Au-wire	25µm thick (<mark>ball-bond</mark>)
TES	W-TES on Al_2O_3
Baseline resolution	82 eV

Conclusions:

- Ball-bond improves the baseline resolution
- At this point we are not limited by the heat capacity Schematic representation of the TES on the wafer

Detector Olympia

- •
- Slow events (slow rise time) a.
- b.

FUR PHYSIK

Detector Olympia'

Modification: No Au-bridge

MAX-PLANCK

• Au-bridge might be a bottleneck for the transmission of the signal

Absorber	Si (20×10×5 mm ³)
Au-pad	<mark>8 μm</mark> thick (glued)
Au-wire	25µm thick (ball bond)
TES	W-TES on Al_2O_3
Baseline resolution	800eV

Schematic representation of the TES on the wafer

Detector Olympia'

- Modification: No Au-bridge
- Au-bridge might be a bottleneck for the transmission of the signal

MAX-PLANC

- Two different event classes
- a.
- b.

FUR PHYSIK

Comparison of the pulse shapes between detector setup Olympia and Olympia'

Summary

- Ball-bond improves the performance of the • remoTES
- Heat capacity is not limiting at this point the ٠ performance
- The removal of the Au-bridge seems to be promising for optimize the performance

Thank you !

MAX-PLANCK-INSTITUT FÜR PHYSIK

Backup slides

A way to identify different event classes

MAX-PLANCK-INSTITUT FÜR PHYSIK