

What we can learn from blazar light curves

Lea Heckmann, David Paneque & Axel Arbet-Engels

- Most luminous persistent sources in the universe
- Bright compact nucleus in the center of galaxy
- Variable in time
- Potential emitters of neutrinos and UHECRs
- Highly energetic physics laboratories

Credit: http://www.astro.princeton.edu/~lilew/

DPG Dresden

```
22 - 03 - 2023
```


Credit: http://www.astro.princeton.edu/~lilew/

Lea Heckmann

DPG Dresden

Supermassive black hole (10¹⁰ - 10¹⁴ m)

with accretion disc (10¹⁰ - 10¹⁶ m)

Credit: http://www.astro.princeton.edu/~lilew/

Lea Heckmann

DPG Dresden

Supermassive black hole (10¹⁰ - 10¹⁴ m)

with accretion disc (10¹⁰ - 10¹⁶ m)

Credit: http://www.astro.princeton.edu/~lilew/

Lea Heckmann

DPG Dresden

Jets (10¹⁶ - 10²² m ~ 0.1pc to Mpc)

Supermassive black hole (10¹⁰ - 10¹⁴ m)

with accretion disc (10¹⁰ - 10¹⁶ m)

Credit: http://www.astro.princeton.edu/~lilew/

Lea Heckmann

DPG Dresden

Jets (10¹⁶ - 10²² m ~ 0.1pc to Mpc)

Supermassive black hole (10¹⁰ - 10¹⁴ m)

with accretion disc (10¹⁰ - 10¹⁶ m)

Credit: http://www.astro.princeton.edu/~lilew/

Lea Heckmann

DPG Dresden

Blazars

Jets (10¹⁶ - 10²² m ~ 0.1pc to Mpc)

Supermassive black hole (10¹⁰ - 10¹⁴ m)

with accretion disc (10¹⁰ - 10¹⁶ m)

Credit: http://www.astro.princeton.edu/~lilew/

Lea Heckmann

DPG Dresden

22 - 03 - 2023

Blazars

- AGNs with jets in our direction
- Strong boosting along the jet
 → even higher variability

Jets $(10^{16} - 10^{22} \text{ m} \sim 0.1 \text{ pc to Mpc})$

Credit: http://www.astro.princeton.edu/~lilew/

Lea Heckmann

DPG Dresden

Blazars

- AGNs with jets in our direction
- Strong boosting along the jet
 → even higher variability

Supermassive black hole (10¹⁰ - 10¹⁴ m) with accretion disc (10¹⁰ - 10¹⁶ m)

- Many open questions:
 - What is radiating?
 - In which environment?

• ...

Dusty torus (1014 - $10^{17} \,\mathrm{m}$)

Credit: http://www.astro.princeton.edu/~lilew/

Lea Heckmann

DPG Dresden

Multimessenger astronomy AGNs, SNRs, GRBs... Gamma rays black holes Earth Neutrinos air shower Credit: Juan Antonio Aguilar & Jamie Yang, IceCube/WIPAC Lea Heckmann DPG Dresden 22 - 03 - 2023

2

Multiwavelength (MWL) astronomy

Lea Heckmann

DPG Dresden

22 - 03 - 2023

Credit: Wikipedia

Multiwavelength (MWL) astronomy

Credit: Wikipedia

Lea Heckmann

DPG Dresden

```
22 - 03 - 2023
```

Multiwavelength (MWL) astronomy

Credit: Wikipedia

Lea Heckmann

DPG Dresden

H. Abe et al., accepted by ApJS, arxiv:2210.02547 (2023).

MWL light curves

H. Abe et al., accepted by ApJS, arxiv:2210.02547 (2023).

Credit: Wikipedia

MWL light curves

H. Abe et al., accepted by ApJS, arxiv:2210.02547 (2023).

Credit: Wikipedia

MWL light curves

H. Abe et al., accepted by ApJS, arxiv:2210.02547 (2023).

Credit: Wikipedia

H. Abe et al., accepted by ApJS, arxiv:2210.02547 (2023).

MWL light curves

Credit: Wikipedia

Bayesian blocks J. D. Scargle et al., ApJ 764.2 (2013)

- Algorithm that identifies specific time intervals, blocks, in a data set:
 - Defines a number of change points defining a block
 - Prior distribution for the number of blocks penalizing for more blocks
 - Likelihood of the model = combination of the individual likelihoods of each block + prior
 - Maximixation of a fitness function adjusted to the specific data type used (e.g. binned or unbinned event data, measured sequences with Gaussian errors,...)

Bayesian blocks J. D. Scargle et al., ApJ 764.2 (2013)

 Applied to the 4-year very-high-energy (VHE) γ-ray LC of Mrk 501

L. Heckmann, PhD Thesis, Leopold-Franzens Universität Innsbruck (May 2023)

Bayesian blocks J. D. Scargle et al., ApJ 764.2 (2013)

 Applied to the 4-year very-high-energy (VHE) γ-ray LC of Mrk 501

→ Identified 2-year long historically low state

L. Heckmann, PhD Thesis, Leopold-Franzens Universität Innsbruck (May 2023)

Fractional variability S. Vaughan et al., MNRAS 345.4 (2003)

• Evaluates variance of the data points with taking into account measurement uncertainties

$$F_{var} = \sqrt{rac{S^2 - <\sigma_{err}^2>}{< F_{\gamma}>^2}}$$

Fractional variability

S. Vaughan et al., MNRAS 345.4 (2003)

• Evaluates variance of the data points with taking into account measurement uncertainties

$$F_{var} = \sqrt{rac{S^2 - <\sigma_{err}^2>}{< F_{\gamma}>^2}}$$

- Applied to the 4-years MWL LCs of Mrk 501
 - Two peak structure
 - \rightarrow highest variability in X-rays and VHE $\gamma\text{-rays}$ produced by highly-energetic particles
 - Plateau for the low-state

H. Abe et al., accepted by ApJS, arxiv:2210.02547 (2023).

Discrete Correlation Function R. A. Edelson and J. H. Krolik, ApJ 333 (1988)

• Correlation measure adjusted to astrophysical data (uneven sampling,...)

$$DCF(\tau) = rac{1}{M}UDCF_{ij}$$
 $UDCF_{ij} = rac{(a_i - \bar{a})(b_j - \bar{b})}{\sqrt{\sigma_a^2 - e_a^2}(\sigma_b^2 - e_b^2)}$

Discrete Correlation Function R. A. Edelson and J. H. Krolik, ApJ 333 (1988)

• Correlation measure adjusted to astrophysical data (uneven sampling,...)

$$DCF(\tau) = \frac{1}{M}UDCF_{ij} \qquad UDCF_{ij} = \frac{(a_i - \bar{a})(b_j - \bar{b})}{\sqrt{\sigma_a^2 - e_a^2}(\sigma_b^2 - e_b^2)}$$

- Applied to the 4-years MWL LCs of Mrk 501
 - Significant correlation (>3σ) without a time lag between the X-rays and VHE γ-rays
 → produced by the same population of particles

H. Abe et al., accepted by ApJS, arxiv:2210.02547 (2023).

DPG Dresden

Lomb-Scargle-Periodigram N. R. Lomb, Ap&SS 39.2 (1976) J. D. Scargle, ApJ 263 (1982)

- Evaluate periodicity in data set
- Classical periodigram adjusted to astrophysical data

$$P_X(\omega) = \frac{1}{2} \left\{ \frac{\left[\sum_j X_j \cos \omega(t_j - \tau)\right]^2}{\sum_j \cos^2 \omega(t_j - \tau)} + \frac{\left[\sum_j X_j \sin \omega(t_j - \tau)\right]^2}{\sum_j \sin^2 \omega(t_j - \tau)} \right\} \qquad tan(2\omega\tau) = \frac{\sum_j \sin 2\omega t_j}{\sum_j \cos 2\omega t_j}$$

Lomb-Scargle-Periodigram N. R. Lomb, Ap&SS 39.2 (1976) J. D. Scargle, ApJ 263 (1982)

- Evaluate periodicity in data set
- Classical periodigram adjusted to astrophysical data

$$P_X(\omega) = rac{1}{2} \left\{ rac{\left[\sum_j X_j \cos \omega(t_j - au)
ight]^2}{\sum_j \cos^2 \omega(t_j - au)} + rac{\left[\sum_j X_j \sin \omega(t_j - au)
ight]^2}{\sum_j \sin^2 \omega(t_j - au)}
ight\}$$

- Applied to long-ter MWL LCs of Mrk 501
 - Previous claim, e.g. 30 days in X-rays
 → binary black hole system?
 - Checked 12-years of X-ray data
 - No significant periodicity found

DPG Dresden

Summary & Conclusions

- **Blazars** are interesting objects to study, especially because their jets **accelerate particles to extremely high energies**
- Multi-messenger and Multiwavelength studies are vital to understand these powerful sources
- Data sets are growing and there are many **statistical methods** which are valuable tools to gain more insights

Credit: http://www.astro.princeton.edu/~lilew/

