Differential cross-section measurements of an hadronically decaying $t\bar{t}$ -pair produced in association with two b-jets with the ATLAS detector at $\sqrt{s} = 13$ TeV

DPG Frühjahrestagung 2023 - Dresden

T. Barillari, A. Kiryunin, S. Menke, P. Schacht, M. Spalla, <u>N. Wenke</u> Thursday, 23.03.23

for full Run-2 data (139 fb⁻¹) with the ATLAS detector at √s = 13 TeV final state of all hadronic ttbb characterized by

Analysis introduction

- final state of all hadronic ttbb characterized by
 8 jets in the final state (4 among them are b-jets)
- main backgrounds: multi-jet and all hadronic $t\bar{t}$
- motivation:
 - study dynamics of heavy quark production
 - main background of ttee process: large uncertainties associated to the tteb modeling
- total and differential fiducial $t\bar{t}b\bar{b}$ cross-section measurement by ATLAS in 2019 in dilepton- and lepton+jets decay-channel [JHEP 04 (2019) 046]

analysis aim: fiducial differential and total cross-section measurements

• total all hadronic $t\bar{t}b\bar{b}$ cross-section measurement by CMS in 2020: $\sigma_{t\bar{t}b\bar{b}}^{all had} = 5.5 \pm 0.3 \text{ (stat.)}_{-1.3}^{+1.6} \text{ (syst.)} \text{ pb} \text{ [Phys. Lett. B, Vol. 803 (2020) 135285]}$

(one possible example of the final-state)

\rightarrow this analysis is the first ATLAS + first all hadronic $t\bar{t}b\bar{b}$ differential cross-section measurement

23.03.23

Event-selection based on MC-events

process	MC-sample		\mathbf{cut}	expected events		
all hadronic $t\overline{t}b\overline{b}$	Powheg+Pythia8			$t\bar{t}b\bar{b}$	mj(4b)	allhad. $t\bar{t}$
			quality cuts (GRL etc.)	2376640.0	7649400.0	46627700.0
multi-b	Pythia8 with 4b-filter		no double counting of $(\bar{I},\bar{I},\bar{I},\bar{I},\bar{I},\bar{I},\bar{I},\bar{I},$	2376640.0	7649400.0	42873800.0
all hadronic $t\bar{t}$	Powheg+Herwig7	no events with large mc-weight		2376810.0	7649400.0	42873800.0
			no electron with $p_T \ge 25 \text{ GeV}$	2376070.0	7646500.0	42865300.0
			no muon with $p_T \ge 25 \text{ GeV}$	2375750.0	7646010.0	42861300.0
		-	$MET < 60 { m ~GeV}$	1933610.0	6180100.0	36581600.0
2 b-jets (DL1r 60% WP) with $p_T > 55~\text{GeV}$ and \geq 2 additional jets with $p_T > 55~\text{GeV}$			≥ 8 jets with $p_T \geq 25 \text{ GeV}$	338726	269826	2807320.0
			\rightarrow pass offline 2b2j trigger cuts	81632.5	103171	299111
			pass online 2b2j trigger	74381.9	96019.8	259118
		-	KLFitter-LLH \geq - 50	64779.2	57720.3	237008
2b2j'-trigger requires: 4 jets with $p_T \ge 35$ GeV (2 of them need to be b-tagged)				(~ 3%)	(~ 7‰)	(~ 5‰)

The analysis uses **Particle-Flow** ('PFlow') **jets**, jets containing a b-hadron (**'b-tagged jets**'/**'b-jets'**) are identified using a neural network, **DL1r**.

Reconstruction of the all hadronic $t\bar{t}b\bar{b}$ system

- **full reconstruction** of the top-quark and extra b-quark momenta
 - → not trivial as jets cannot be associated uniquely with the partons of the hard-scattering process
 - → reconstruction algorithms are used to find the best corresponding match between them
- <u>all hadronic tt system:</u>
 - use a likelihood-based method for kinematic fitting 'KLFitter' [Nucl. Instrum. Meth. A748 (2014) 18–25, Nucl. Instrum. Meth. A748 (2014) 18–25]
 → extended by us to allow reconstruction for events with ≥ 6 jets in the final-state

•
$$\epsilon_{\text{matched}} = \frac{N_{\text{KLF}} \text{ output does match}}{N_{6 \text{ jets in the event match}} \approx 32\%$$

- <u>extra bs:</u>
 - order the remaining b-jets in the event (not selected by KLFitter) according to their b-tagging score and choose the two b-jets with highest score
 - b-jets with same b-tagging score are ordered in $\ensuremath{p_{\mathrm{T}}}$

ABCD-method

- ABCD-method is a standard technique for data-driven estimation of the multi-jet background
 - input: two uncorrelated variables
 - then: definition of 4 regions (3 CRs and 1 SR)
- variables in this analysis
 - $R_{32} = \frac{m_{jjj}}{m_{jj}} [JHEP 09 (2017) 118]$
 - \rightarrow R₃₂ inside: R₃₂ \in [1.8, 2.4] for both tops
 - → R_{32} outside: $R_{32} \notin [1.8, 2.4]$ for at least 1 top
 - number of b-jets (b) and extra b-jets (ex. b) at b-tagging working points with 60%/85% efficiency $\rightarrow N_b^{85} \ge 4 \text{ AND } N_{ex b}^{85} \ge 2 \text{ AND } N_b^{60} \ge 2$ $\rightarrow N_b^{85} < 4 \text{ AND } N_{ex b}^{85} < 2 \text{ AND } N_b^{60} \ge 2$
- **'bin-wise' ABCD method** to obtain bin contents $n_i^{SR D}$ of multi-jet distribution in SR D: $n_i^{SR D} = \frac{n_i^{CR B}}{n_i^{CR A}} * n_i^{CR CR C}$
- performs well: good agreement with data (see next slide)

	$\begin{array}{l} N_b^{85} < 4 \text{ AND} \\ N_{exb}^{85} < 2 \text{ AND } N_b^{60} \geq 2 \end{array}$	$\begin{array}{l} N_b^{85} \geq 4 \text{ AND} \\ N_{ex b}^{85} \geq 2 \text{ AND } N_b^{60} \geq 2 \end{array}$
R ₃₂ outside	CR A	CR B
R ₃₂ inside	CR C	SR D

Parton-level unfolding

- **unfolding =** infer the parton-information from the distributions measured at detector-level (known to be distorted due to finite resolution and limited acceptance of the detectors)
- implemented fiducial parton-level unfolding using Iterative Bayesian Unfolding [NIMA, Vol. 362, Issues 2-3, pp. 487-498 (1995)] as implemented in RooUnfold 2.0.1
- started by looking at m(ttbb), extended to further variables like $h_{T}(ttbb)$ ٠
- conducted multiple studies to ensure stable and good performance

parton-level event-selection

- $p_T \ge 17.5 \text{ GeV}$ and $|\eta| < 2.9 \text{ for}$ at least 7 partons among all the partons from the $t\bar{t}b\bar{b}$ decay plus the b-quarks from parton shower
- trigger-mimicing cut: $p_T \ge 48$ GeV for 4 partons and two b-quarkss (top b-quarks, extra b-quarks from parton shower or matrix element bs) $p_T \ge 48 \text{ GeV}$

iterations)

Differential cross-section distribution of $h_T(t\bar{t}b\bar{b})$

Summary

- presented first preliminary results of all hadronic ttbb differential cross-section measurement in ATLAS
 - final-state: 8 jets with 4 b-tagged jets
 - main backgrounds: multi-jet and all hadronic $t\bar{t}$
- reconstruction of all hadronic tt-system in ttbb events performed with KLFitter, extra bs selected according to their b-tagging score
- estimation of multi-jet background with ABCD method
 → good agreement with MC predictions
- **unfolding** conducted with **Iterative Bayesian Unfolding** as implemented in RooUnfold
- first differential cross-section measurement in $h_T(t\bar{t}b\bar{b})$ obtained \rightarrow statistical error calculation and determination of systematic uncertainties work in progress
- measurement will be extended to further variables

(one possible example of the final-state)