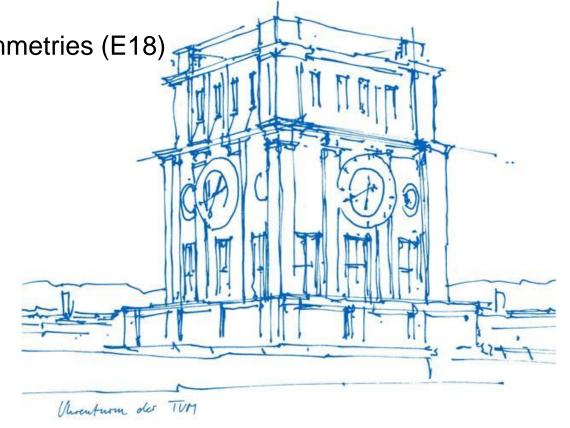


DHH Status


Igor Konorov

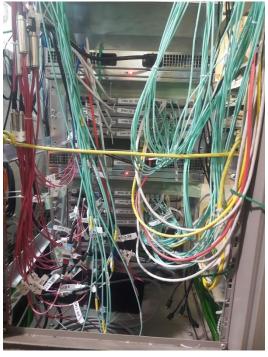
Institute for Hadronic Structure and Fundamental Symmetries (E18)

TUM Department of Physics

Technical University of Munich

PXD and DEPFET Workshop 22-24.05.2023

Outline of Talk

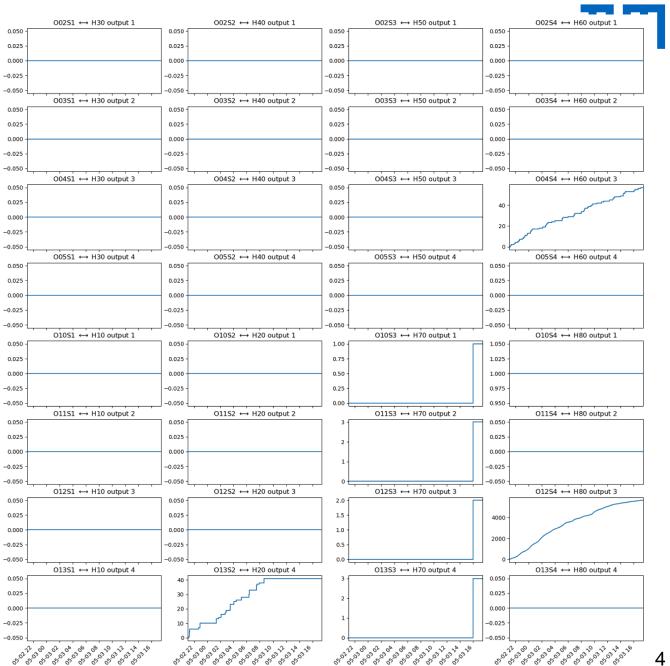

- DHH Status
- DHH Carrier Card Upgrade

DHH Status at KEK

- DHH for PXD2
 - DESY DHH
 - PXD1 DHH
- Quite smooth commissioning
- Provision of special X-switch configuration for DHH tests with single DHP link
- No big issues
 - ripped of USB connector together with usb cable => repaired by exchanging
 JTAG-USB controller at KEK
 - Loose FTSW connector on one of DHHRTM, no handshake with FTSW
 - Careful work around rack is required
 - Arranging cables in safe way for final installation using cable channels
 - Exchange of 2 DHE modules due to unstable power switch behavior

Remaining DHH Issues

FTSW Links


DHH70 handshake with FTSW not established

Instable ONSEN links

- DHH20 4
- DHH60.3
- **DHH80.3**

Origin of the problem and solution

- Not fully plugged connector between CC <=> RTM
- Small displacement of connector in the design

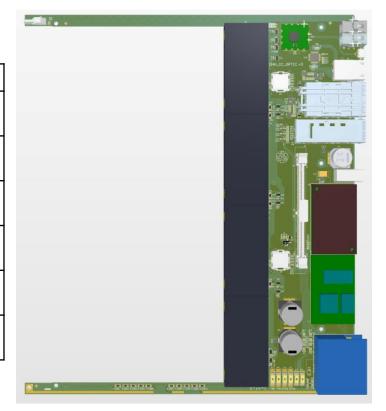
DHH UPGRADES

DHH Carrier Card Upgrade

DHE1	DHC	DHE4	DHE5
DHE2	DHE3	DI	H

Change of DHH Carrier Card layout

- PCB layer stack optimized for matched impedance transmission lines
- Rearranged DHC position to minimize HS link traces' length
- Improved layout for high speed links
- All external transceivers mounted on DHHCC no RTM


Test of the prototype

- JTAG OK
- ONSEN links, FTSW, IPBUS OK
- FTSW OK
- Test of DHC-DHE/DHI link tests
- DHE5 and DHI suffer from signal deteriorate after longer traces
- Still room for optimization of driver and receiver parameters

Preparation for production

- Change layout LConnect DHE5 and
- Submit final production

Module	Error rate	Trace length	
DHE1	10^-11	Tx : 119 mm Rx : 112 mm	
DHE2	10^-11	Tx : 89 mm Rx : 99 mm	
DHE3	10^-11	Tx : 39 mm Rx : 33 mm	
DHE4	10^-11	Tx : 123 mm Rx : 121 mm	
DHE5	10^-8	Tx : 188 mm Rx : 180 mm	
DHI	10^-8	Tx : 180 mm Rx : 174 mm	

Igor Konorov

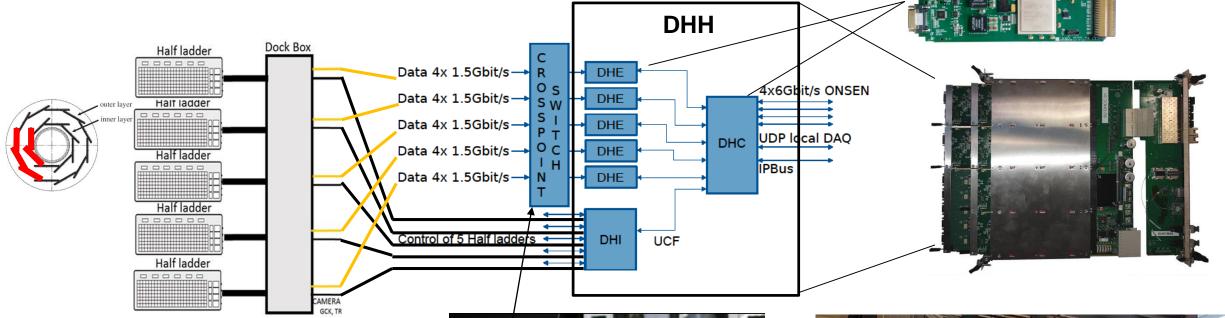
6

DHH Carrier Card Upgrade

Preparation for production:

- Change of layout: use external high speed cables for DHE5 and DHI
- Submit full Carrier Card production in June
- Installation : after full commissioning of PXD2 winter break ?

Summary


- DHH and X-switch were successfully commissioned at KEK
- Issue with FTSW link of DHH70 to be investigated
- ONSEN links require extra attention and to be tested and debugged right after DHH moved to final location. Time for that to be allocated.
- Carrier Card was tested and small layout changes were done
- Submit for full production in June

THANK YOU

PXD Readout Overview

Cross-point switch : 144x144 @6GB/s

DHHCC : ATCA

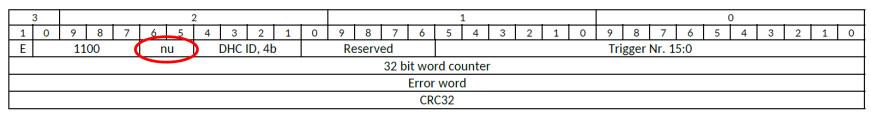
DHI : A7XC100T, Configuration and Trigger

DHE/DHC : V6XC130 FPGA, 4GB memory, Data processing

DHH : DHI + 5xDHE + DHC

Igor Konorov

DHE/DHC


PXD Data Throttling II

1. New data throttling algorithm

- Idea is to prevent overflow of DHP buffers to handle any occupancy
- Extrapolation and prevention of expected full detector occupancy from first one or few first gates
- Provision of active throttling to DAQ with data

DHC End of Sub Event Frame

- Normal operation
 - DHPs run continuously
 - DHE monitors detector occupancy
 - DHE extracts data in time with trigger

- Throttling
 - DHE detects high occupancy and issues VETO
 - DHE VETO => DHC => DHI => DHP
 - VETO valid for one or more FRAMEs
 - VETO conditions
 - Exceeding maximum occupancy of one frame
 - Exceeding maximum occupancy of part of frame
 - Exceeding DHP buffer maximum fill level by monitoring data latency

PXD Data Throttling I

- Fundamental difference of PXD vs other detectors is an integration time of 20 us or 2 KEKB revolution cycles.
- PXD readout based on running shutter. It takes 20 us for one round and each round organizes hits in single FRAME
- B2TT Triger initiates PXD Trigger which is effectively DATA ENABLE signal

- DHPT links' bandwidth allow to read maximum 2.3% occupancy in continuous mode when DATA ENABLE is always
 active
- Exceeding maximum PXD occupancy causes loss of data and
- at some cases it may cause loss of synchronization of data between DHP and DHE

Single Server Configuration

Hardware

PCIE Card from Trenz Electronics GmbH TEC0330

- FPGA Xilinx Virtex-7 XC7VX330T-2FFG1157C
- PCIE 8 lane Gen2, 3 GB/s
- 8 GByte DDR3 memory
- FMC connector with 12 High speed interfaces
- Delivery in January 2024

Server Dell PowerEdge R7515

- 1x7302 AMD CPU, 16 cores
- 128 GB DRAM, extendable to 512 GB
- 2x M.2 SSD 1TB

Main PCIe FPGA functionality

- buffer
- Clustering
- Event building

Main server functionality

- DMA data transfer from PCIe to local memory
- Data buffering till HLT
- Data retrieving and ROI selection
- Interface to EB2
- Missing manpower for software development for this project
- We are looking for a possible solution and we hope to find one

Igor ł