

TEST STRUCTURE IRRADIATION

PXD WORKSHOP 22.05.2023

<u>G. Giakoustidis</u>

bmb+f - Förderschwerpunkt

Elementarteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

OVERVIEW

- Introduction
 - DePFET backside
 - High backside currents
 - Mechanism
- Test structures
- X-ray irradiation setup
- Results
- Summary

DEPFET BACKSIDE

- Sensor depletion via Punch-through (PT or HV) contact
- Guard-ring structure surrounding the backside implant
- Guard-ring structure floating to ensure smooth electric field reduction towards the edge of the sensor
- IceMOS or Shin-Etsu bonded wafer

HIGH HV CURRENTS

- High HV currents observed in modules at KEK since spring 2020
- Verified by X-ray irradiation campaigns in the lab with full-scale and prototype modules
 - Saturation expected at ~ 1.5 Mrad (burried SiO₂ TID) from lab measurements
 - − IceMOS \rightarrow saturation @ ~7 mA
 - HV current in IceMOS is ~10x higher than Shin-Etsu
- As of now, dose of modules at KEK up to 0.6 Mrad TID , but currents go (far) beyond 7 mA
 - f(T, RH, dD/dt, ...)
- Mechanism?

- *<u>Secondary Ion Mass Spectroscopy (SIMS) + Simulation:</u> Extract dopant profile*
- Shorted guard rings
 - The effect is worse in IceMOS than Shin-Etsu bonded wafers
- <u>Current understanding</u>: High electric fields at guard-ring structures \rightarrow avalanche current multiplication \rightarrow increased currents
- Structure to verify the mechanism?

MOSFET TEST STRUCTURES

- Processing similar to DePFET
- Use p+ backside implantation of matrices as source and drain to create MOSFETs
- $^-$ Less complicated than DePFET → easier to verify the mechanism

MEASUREMENT GOALS

- Irradiation up to ~10 Mrad & same dose rate:
 - Burried SiO₂ dose in full-scale and prototype modules from previous campaigns

- <u>Biasing:</u>
 - **Zero-biasing** \rightarrow comparison to literature
 - **DePFET biasing** \rightarrow comparison to previous irradiation campaigns with DePFET
- Main measurements:
 - Create avalanche currents by scanning over highly positive V_{GS}
 - Verify that onset starts earlier with higher radiation levels
 - Measure threshold voltage
 - Calculate oxide charge density
- <u>Secondary measurements:</u>
 - Study other MOSFET characteristics (e.g. sub-threshold swing)

X-RAY CHAMBER AND BEAM PROFILE

- X-ray setup in Bonn
- Tungsten target
- 150 μ m Al filter
- V_{tube} = 40 kV
- I_{anode} = 40-50 mA
- − X-ray beam profile gradient \rightarrow anode heel effect
- 100% remote irradiation campaign
- Irradiated samples:
 - 2 IceMOS
 - 1 Shin-Etsu

AVALANCHE CURRENT MEASUREMENT (I_avalanche)

PXD Workshop – Georgios Giakoustidis

ICEMOS

Onset indeed shifts to lower
 voltages with irradiation

GATE THRESHOLD VOLTAGE MEASUREMENT (I_{DS} vs V_{GS} (thr)) ICEMOS

- Use minimum of g_m/I_{DS} to determine the threshold

Noise can affect the measurement (especially the baseline)

22.05.2023

GATE THRESHOLD VOLTAGE MEASUREMENT (I_{DS} vs V_{GS} (thr))

SHIFT

Higher gate threshold shift for IceMOS (thicker oxide)

GATE THRESHOLD VOLTAGE MEASUREMENT (I_{DS} vs V_{GS} (thr))

SHIFT

- Higher gate threshold shift for shorter annealing times

GATE SUB-THRESHOLD SWING MEASUREMENT (I_{DS} vs V_{GS} (sub)) ICEMOS

GATE SUB-THRESHOLD SWING MEASUREMENT (I_{DS} vs V_{GS} (sub)) UNIVERSITÄT BONN

GATE SUB-THRESHOLD SWING MEASUREMENT (I_{DS} vs V_{GS} (sub)) UNIVERSITÄT BONN

SUMMARY

- Observed discrepancies between modules at KEK and lab
 - Under investigation
 - f(T, RH, dD/dt, ...)
- High backside current mechanism is understood
 - Partially) shorted guard-rings at the backside
 - Avalanche current multiplication
 - Investigation with irradiation of test structures
 - Irradiation with DePFET biasing scheme
 - Comparison with irradiated DePFET matrices
 - Further analysis and interpretation is needed

BACKUP

PCB FRONT SIDE

PCB IN ACTION

- 8 MOSFET test structures glued and wire-bonded on PCBs
 - 4 IceMOS bonded SOI
 - 4 Shin-Etsu bonded SOI
- Electrical tests and inspection done
 - 7 working
 - 1 non-working (not good bulk contact, not enough glue)
- Fully characterized and X-ray irradiated
 - 1 IceMOS bonded SOI
 - 1 Shin-Etsu bonded SOI

TEST-STRUCTURES FOR HV CURRENT INVESTIGATION

22.05.2023

UNIVERSITÄT BONN

SURFACE RADIATION DAMAGE IN DEPFET

- gate X-ray irradiation \rightarrow e-h pairs \rightarrow Oxide damage (+) Trapped holes at SiO_{2} / Si border due to their low mobility Interface traps p-channe 2. gate p⁺ source p⁺ drain Moving holes in the lattice release protons Trapped holes 1. Protons drift towards the SiO₂ / Si interface internal gate 2. Interface traps n⁻ bulk Reaction with hydrogen-passivated defects \rightarrow H₂ p⁺ backside molecules
 - H₂ molecules diffuse out and charge defect is left behind
- Effect on V_{th} of a FET
 - Negative threshold shift for p-channel MOSFET
 - DEPFET gate (V_G) and Common Clear Gate (V_{ccg})

DEPFET PROCESSING

- Processing similar to DEPFET
 - Backside implantation of the Top Wafer
 - Oxidization of the Top and Handle Wafer
 - SOI bonding of the two Wafers (Shin-Etsu and IceMOS)
 - Passivation
 - Unstractured n-type substrate on the topside of the Top Wafer
 - Etching

DEPFET PROCESSING

TEST STRUCTURES ON WAFER LEVEL

- Six (6) wafers in total
 - Three (3) IceMOS bonded SOI
 - Three (3) Shin-Etsu bonded SOI
- Five (5) different structures
 - Four (4) MOSFET
 - One (1) MOS CAP
- Structures have been cut, tested and sent to Bonn

IRRADIATION PLAN

step #	Distance [cm]	voltage [kV]	current [mA]	peak dose at 50 mA [Mrad/h]	peak dose at 50 mA [krad/h]	Dose Rate (median) at 50 mA [Mrad/h]	Target Dose Rate (median [Mrad/h]	Target Dose Rate (median) [krad/h]	Duration (with median dose rate)	Duration in seconds	Dose step in SiO2 (burried SiO2 in DEPFET) [krad]	TID SiO2 [krad]
1	60	40	42	0.082	82	0.078	0.065	65	0:02:26	146	2.64	2.64
2	60	40	42	0.082	82	0.078	0.065	65	0:02:26	146	2.64	5.28
3	60	40	42	0.082	82	0.078	0.065	65	0:02:26	146	2.64	7.91
4	60	40	42	0.082	82	0.078	0.065	65	0:04:52	292	5.28	13.19
5	60	40	42	0.082	82	0.078	0.065	65	0:12:11	731	13.19	26.38
6	60	40	42	0.082	82	0.078	0.065	65	0:24:21	1,461	26.38	52.76
7	60	40	42	0.082	82	0.078	0.065	65	0:48:42	2,922	52.76	105.52
8	60	40	42	0.082	82	0.078	0.065	65	1:37:24	5,844	105.52	211.03
9	60	40	42	0.082	82	0.078	0.065	65	2:26:06	8,766	158.28	369.31
10	60	40	42	0.082	82	0.078	0.065	65	3:14:48	11,688	211.03	580.35
11	60	40	42	0.082	82	0.078	0.065	65	4:52:12	17,532	316.55	896.90
12	60	40	42	0.082	82	0.078	0.065	65	7:18:18	26,298	474.83	1,371.73
13	60	40	42	0.082	82	0.078	0.065	65	9:44:24	35,064	633.10	2,004.83
14	60	40	42	0.082	82	0.078	0.065	65	12:59:12	46,752	844.14	2,848.97
15	60	40	42	0.082	82	0.078	0.065	65	15:25:18	55,518	1,002.42	3,851.39
16	60	40	42	0.082	82	0.078	0.065	65	21:54:55	78,895	1,424.49	5,275.87
17	60	40	42	0.082	82	0.078	0.065	65	34:54:07	125,647	2,268.62	7,544.50
18	60	40	42	0.082	82	0.078	0.065	65	46:15:55	166,555	3,007.25	10,551.74

MEASUREMENT PROTOCOL 08.2022-09.2022 IRRAD ICEMOS

	Action	Avg iter time (s)	# meas points	Duration
0.1	Irradiate			
0.2	Anneal for 1h	-	-	1:00:00
1.1	remove source jumper	-	-	0:01:00
1.2	Place plastic cap with black tape	-	-	0:01:00
1.3	I_avalanche	8.15	93	0:12:38
2.1	Place back source jumper	-	-	0:01:00
2.2	lbs vs Vbs (sensor-like IV)	4.09	111	0:07:34
3.1	lds vs Vgs (find range)	3.41	71	0:04:02
3.2	lds vs Vgs (thr)	3.41	2,130	2:01:03
4.1	lds vs Vgs (sub) (Vds = 0.01 V, Vbs = 0 V)	3.17	221	0:11:41
4.2	lds vs Vgs (sub) (Vds = 0.01 V, Vbs = 15 V)	3.17	221	0:11:03
4.3	lds vs Vgs (sub) (Vds = 0.01 V, Vbs = 30 V)	3.17	221	0:11:03
4.4	lds vs Vgs (sub) (Vds = 0.01 V, Vbs = 50 V)	3.17	221	0:11:03
4.5	lds vs Vgs (sub) (Vds = 0.01 V, Vbs = 70 V)	3.17	221	0:11:03
4.6	lds vs Vgs (sub) (Vds = 0.01 V, Vbs = 90 V)	3.17	221	0:11:03
5.1	Adjust gate and drain values	-	-	0:10:00
5.2	lds vs Vds	4	882	0:58:48
6.1	Turn off Keithley outputs	-	-	0:01:00
6.2	Move the DUT from the X-ray machine to the CV setup	-	-	0:05:00
6.3	Change cables	-	-	0:05:00
6.4	Set jumpers and jumper cables based on the photo	-	-	0:02:00
6.5	C-Vgb (source, drain to bulk)	14.79	300	1:13:57
7.1	Change cables	-	-	0:02:00
7.2	Set jumpers and jumper cables based on the photo	-	-	0:05:00
7.3	C-Vsb (drain to source, gate float)	14.79	360.00	1:28:44
8.1	Move the DUT from the CV setup to the X-ray machine	-	-	0:05:00
8.2	Set jumpers back	-	-	0:01:00
8.3	Remove the plastic cap	-	-	0:01:00
8.4	Align the DUT	-	-	0:01:00
8.5	Turn on Keithley outputs	-	-	0:01:00
8.6	Check Voltage, Current and timer of X-ray machine	-	-	0:02:00

Total duration 1 cycle [h] 8:57:42

MEASUREMENT PROTOCOL 11.2022-12.2022 IRRAD SHIN-ETSU

	Action	Avg iter time (s)	# meas points	Duration	
0.1	Irradiate				
0.2	Anneal for 1h	-	-	1:00:00	
1.1	Open relay switch	-	-	0:01:00	
1.2	I_avalanche	8.15	93	0:12:38	
2.1	Close relay switch	-	-	0:01:00	
2.2	Ibs vs Vbs (sensor-like IV)	4.09	333	0:22:42	
3.1	lds vs Vgs (find range)	3.41	71	0:04:02	
3.2	lds vs Vgs (thr)	3.41	2,130	2:01:03	
4.1	lds vs Vgs (sub) (Vds = 0.01 V, Vbs = 0 V)	3.17	221	0:11:41	
4.2	lds vs Vgs (sub) (Vds = 0.01 V, Vbs = 15 V)	3.17	221	0:11:03	
4.3	lds vs Vgs (sub) (Vds = 0.01 V, Vbs = 30 V)	3.17	221	0:11:03	
4.4	lds vs Vgs (sub) (Vds = 0.01 V, Vbs = 50 V)	3.17	221	0:11:03	
4.5	lds vs Vgs (sub) (Vds = 0.01 V, Vbs = 70 V)	3.17	221	0:11:03	
4.6	lds vs Vgs (sub) (Vds = 0.01 V, Vbs = 90 V)	3.17	221	0:11:03	,
5.1	Adjust gate and drain values	-	-	0:10:00	
5.2	lds vs Vds	5.5	882	1:20:51	
6	Sleep 3 hours and 10 minutes	-	-	3:10:00	
7	Check DUT alignment	-	-	0:01:00	
8	Adjust irradiation settings	-	-	0:01:00	

To keep the same annealing time as in the previous campaign

> Total duration 1 cycle [h] 9:32:12

AVALANCHE CURRENT MEASUREMENT (I_avalanche) SHIN-ETSU

- Shin-Etsu
- $-V_{\rm DS} = 0$ V, $V_{\rm BS} = 30$ V
- Measurement before irradiation
- Onset indeed shifts to lower voltages with irradiation
- From onset the oxide charge can be calculated
- Measurements also for V_{BS} = 35
 V and V_{BS} = 40 V (see backup)

AVALANCHE CURRENT MEASUREMENT (I_avalanche) ICEMOS W01_02

- Shin-Etsu
- $-V_{\rm DS} = 0$ V, $V_{\rm BS} = 30$ V
- Measurement before irradiation
- Onset indeed shifts to lower voltages with irradiation
- From onset the oxide charge can be calculated
- Measurements also for V_{BS} = 35
 V and V_{BS} = 40 V (see backup)

AVALANCHE CURRENT MEASUREMENT (I_avalanche) SETUP

- Source implant floating
- V $_{\rm DS}$ = 0 V, V $_{\rm BS}$ = 30 V, scan over positive V $_{\rm GS}$

- V_{DS} = 0 V, V_{GS} = 0 V, scan over positive V_{BS}
- Measurements for V_{GS} = -5 V, 5 V as well

GATE THRESHOLD VOLTAGE MEASUREMENT (I_{DS} vs V_{GS} (thr)) UNIVERSITÄT BONN

- V $_{\rm DS}$ = 0.01 V, V $_{\rm BS}$ = 0 V, scan over negative V $_{\rm GS}$
- IVs also for different V_{BS}values

 Hardware will be further improved with TRIAX cables and a special DUT box (Faraday cage)

GATE SUB-THRESHOLD SWING MEASUREMENT (I_{DS} vs V_{GS} (sub)) SHIN-ETSU

AVALANCHE CURRENTS SHIN-ETSU UNIRRADIATED

AVALANCHE CURRENTS SHIN-ETSU

1.4 Mrad

