

 o o<	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0																						L	A D		Γ	\ \	JR	, T							10		1			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			T	ſ	२		S			Δ		V		S	C)	C)														1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2													0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
0 0	0	• •	•	• •	0	0	•	0																																				0	•	•	0	•	0	0	0	0
		6																									_																		•						0	0
		°.																								-	<u>Р</u>	<u>Р.</u> С	<u>.</u>		<u>_e</u>	<u>ch</u>	<u>in</u>	<u>er</u> ,	A	•	Ma	ay	at	SK	a,	D.	_ [∨ - ~		Br	1e	r,				0	0
																											Ċ	G].	•	50	- -	aı	er	,	▼ Γ.	5		m	ec	ке	, r		5 C	10	bt	Jei				0	0
																											M	Μ	1 6	P	G	S	en	nic	or	١d	uc	cto	or_	La	bc	ora	to	ry							0	0
		0																																																	0	0
			0	0 0	0	0	0	0	0	0	0	0	•	0	•	07 0	•	0	0	0	0	0	0	0.0	2		C	D) (el	PF	E	T '	Nc	rk	Ś	hc	pp,	, 1	ut	zi	ng	, 4	24	.0	5.	20)2:	3		0	0

TRISTAN (TRITIUM STERILE ANTI-NEUTRINO)

- KATRIN (KArlsruhe TRItium Neutrino experiment) @ KIT Karlsruhe
 - \triangleright measurement of neutrino mass by β -spectrum end point
 - ▷ spectrometer filters electron energy by retarding field
 - only electrons with energy > filter potential reach the detector
 - electron counting detector, event rate ~ 2 el / day
 - required statistics in 5 years, momentary m_{v} \leq 0.8 eV/c^{2}

TRISTAN

- \triangleright search for "sterile neutrino" \equiv dark matter candidate
 - expected mass ~ 10 keV
 - visible as tiny kink (O \sim 10⁻⁶) in β-decay continuum
- ▷ use of KATRIN facility without energy filter
 - energy-dispersive measurement of full β-spectrum
 - count rate $10^8 \dots 10^9$ el / sec

\rightarrow new detector required

TRISTAN

requirements

- ▷ spectroscopy
- ▷ minimal energy loss
- ▷ beam dimension
- ▷ high count rate

- → good energy resolution
- → thin entrance window
- → large area coverage
- segmentation

- < 300 eV FWHM @ 20 keV (25 el. ENC)
- < 100 nm dead layer
- $\emptyset \sim 20$ cm focal plane, ~ 300 cm²
- $\emptyset \sim \text{mm}$ cell size, ~ 1.000 cells

- detector choice: Silicon Drift Detector SDD
 - ▷ small capacitance & large cell area

▷ multi-channel option

SILICON DRIFT DETECTOR (SDD)

- principle
 - signal charge collection on small readout node by internal static electric field
 - > X-ray & particle spectroscopy
- large area
 - ▷ 5 mm² ... 1 cm² (... wafer scale)
- small capacitance
 - \triangleright low noise, high count rates
- fully depleted and sensitive
 - ▷ efficiency @ high energies
- backside illuminated, uniform thin window
 - ▷ efficiency @ low energies
 - ▷ peak/background ratio
- integration of 1st amplifying FET
 - ▷ further capacitance reduction
 - \triangleright no pickup, no microphonic noise

SILICON DRIFT DETECTOR (SDD)

- simulated electrostatic potential
 - ▷ equipotential lines $\Delta V \approx 1V$
 - \triangleright strong E-field \perp surface, weak E-field || surface
 - \rightarrow fast vertical drift to 1D potential minimum
 - \rightarrow 'slow' horizontal drift to readout structure

- ▷ two saddle points (vertical minimum & horizontal maximum)
 - cell edge
 - barrier of readout structure
 - \rightarrow "field-free" regions

SILICON DRIFT DETECTOR (SDD)

- flexible size & shape
 - \triangleright cell sizing by number & width of field strips
 - \triangleright cell shaping by bended field strips
 - ▷ any 2D geometry
 - ▷ multi-cell option

31 x 15 mm²

- numerous fields of application
 - ▷ commercial products
 - \triangleright scientific experiments
 - b main applications
 - electron microscope EDX
 - X-ray fluorescence XRF

ink analysis of Goethe's original manuscript of Faust II (BAM)

- prototype production SDD33
 - \triangleright volume 6 (+2) wafers
 - \triangleright SDD with integrated FET
 - ▷ 166 cell device (~ 14 x 12 array)
 - 120 "full" cells
 - 46 edge cells for event reconstruction
 - ▷ hexagonal SDD cell Ø \approx 3 mm, A \approx 7 mm²
 - \triangleright chip format 38 x 40 mm²
 - ▷ organized in 14 groups of 12 (11) cells
 - \triangleright 2 rows of ~ 180 bond pads
 - \triangleright cut corner for back side bonds
 - \triangleright smaller formats 8 x 6 cells
 - 2 x 6 cells
 - 7 cells
 - 1 cell

layout of 166 cells TRISTAN SDD

SDD33 wafer

module concept

- ▷ 4-side buttable
- ▷ perpendicular orientation of
 - thermal & mechanical connection
 - CeSiC cooling adapter glued to SDD readout side
 - Cu column
 - signal & supply lines
 - C-shaped pcb & flex lead
 - spring contact matrix
 - electronics board
 7 x 12-channel ETTORE readout
 ASIC (XGLab Milan)
 - flex lead to vacuum flange

TRISTAN 166-cells SDD module

phase 1 detector plane

 \triangleright 3 x 3 array of SDD modules

phase 2

▷ optional expansion to 21 sensors

phase 1 detector plane

3 x 3 modules array ~ 1500 SDD cells

phase 1 detector chamber

- wafer & die level test of prototypes
 - semi-automatic stepping & test function \triangleright
 - stability of diodes
 - integrity of insulating layers
 - characteristics of integrated voltage divider
 - characteristics of integrated FET
 - leakage current
 - high yield, expected performance figures \triangleright

wafer coordinate X [mm] →

- performance
 - ▷ X-ray spectroscopy
 - $\Delta E = 150 \text{ eV FWHM} @ 5.9 \text{ keV}$
 - T = -30 °C, $\tau = 1$ µsec

spectra of a ⁵⁵Fe source recorded by TRISTAN 166-cells SDD

- ▷ electron spectroscopy
 - monoenergetic electrons by electron gun
 - ΔE « 300 eV FWHM @ 20 keV
 - fake peaks by HV instabilities

plots by D. Siegmann, K. Urban (MPP & TUM)

spectra of monoenergetic electrons

FWHM resolution vs. electron energy

30

entrance window

- \triangleright contamination by thin covering layer
 - distortion of low energy electron spectra
 - local phenomenon
 - removed / redistributed by solvent cleaning
- ▷ occurs in mounting, storage, transport, operation, ...
- \triangleright origin unknown, work in progress

lessons

- \triangleright drain series resistance
 - polySi replaced by metal
- ▷ contact resistance
 - additional shallow n-implantation
 - reduction 1/100

- ▷ cell-to-cell cross talk
 - modified routing: line width & spacing
 - insulator thickness x 3.5
 - ground plane

 \triangleright

• final production SDD35

 volume 10 wafers
 chip count 6 x 166 cells 2 x 47 cells 8 x 7 cells
 e.t.a. summer 2023 (7 wafers)

inline yield tests nominal

SDD35 wafer

▷ integration @ KATRIN ~ end 2024

inline test of 47 integrated nJFETs $I_D(V_{GS})$

- entrance window
 - \triangleright implanted diode
 - minimum energy & dose
 - min 'dead layer' thickness limited by profile diffusion@ thermal treatment for B activation
 - ▷ molecular beam epitaxy (MBE)
 - $-\,$ growth of B-doped Si
 - shallow profiles
 - external service by partner lab
 - tested on diode level
 - confirmed by e-beam current measurements
 - 3 SDD35 wafers with MBE window in production

SIMS measured boron profilesimplanted entrance windowepitaxial grown layer(s)

charge collection efficiency by monoenergetic electron beam current (thesis M. Lebert)

COMPOL (COMPTON POLARIMETRY)

- Compton camera
 - ▷ 48-cells SDD
 - \rightarrow scattering detector: interaction position & electron energy
 - ▷ CeBr₃ scintillator & SiPM matrix
 - \rightarrow calorimeter: angle & energy of scattered photon
- CubeSat mission
 - ▷ standardised platform, 3 units
 - \triangleright launch ~ 2025, 1 year, low earth orbit ~ 500 km
 - ▷ target: generation mechanism of black hole binary X-rays
 - synchrotron emission (polarised)
 - inverse Compton scattering (unpolarised)
 - hard X-ray polarimetry (Cygnus X1)
- precursor experiment on ISS
 - ▷ smaller sensor format
 - ▷ launch 2023?

IAXO (INTENATIONAL **AXION OBSERVATORY**)

- solar axion search
 - ▷ predicted particle, dark matter candidate
 - ▷ conversion to X-ray in strong magnetic field
- IAXO telescope @ CERN
 - ▷ CAST successor
 - ▷ magnet 2.5 T
 - \triangleright eight telescopes
 - X-ray mirror optics
 - X-ray sensors (3 competing proposals)
 - ▷ underground lab
 - \triangleright pointing to the sun
- BabyIAXO demonstrator @ DESY
 - ▷ commissioning in 2024

BabyIAXO @ DESY

IAXO telescope @ CERN

IAXO (INTENATIONAL AXION OBSERVATORY)

IAXO detector

- ▷ requirements
 - detection threshold 1 keV
 - efficiency interval
 1 ... 10 keV
- ▷ single cell & seven cells SDDs
- cell diameter 8 mm & 10 mm

low countrate experiment

- \triangleright radiopurity requirement: $10^{-8} 10^{-7}$ counts/(keV \cdot cm² \cdot sec)
- ▷ silicon adapter in fabrication

▷ optional active Ge shield

SUMMARY

- Silicon Drift Detector
 - ▷ SDD topology

 \rightarrow large area, low noise, high count rate

\triangleright integrated FET

- \rightarrow less noise, higher count rates
- \rightarrow no pickup, no microphonic noise

▷ elaborate process technology

 \rightarrow low leakage current, moderate cooling

▷ numerous applications

→ X-ray spectroscopy, particle spectroscopy

